
The University of New Mexico
Department of Computer Science
8th Student Conference

April 24, 2012

Preface
The Computer Science department at the University of New Mexico is an ABET-accredited program offering
Bachelor of Science (BS), Master of Science (MS) and Doctor of Philosophy (PhD) degrees. The department
was founded in 1979 and currently has 17 faculty members, 1 lecturers, 2 post-doctoral researchers, 120
graduate students, and 116 undergraduate students. Research strengths and interdisciplinary collaborations
continue to expand. The annual student conference highlights cutting edge research currently in development
by the graduate community under the leadership of the faculty. The conference is designed to promote active
research in the department, foster excellence in presenting results, and encourage new collaborations.

Expertise and active research areas include:

• Automated reasoning and formal methods (PROFESSOR KAPUR)

• Artifical intelligence and Robotics (PROFESSORS TAPIA AND LUGER)

• Artifical life and evolutionary computing (PROFESSORS ACKLEY AND WILLIAMS)

• Biologically inspired computing (PROFESSORS ACKLEY, FORREST, AND MOSES)

• Biomedical engineering (PROFESSOR LUAN)

• Graphics, imaging (PROFESSOR KNISS)

•High performance computing and large scale distributed systems (PROFESSORS ARNOLD AND BRIDGES)

•Machine learning (PROFESSOR LANE)

•Molecular computing (PROFESSOR STEFANOVIC)

• Quantum computing (PROFESSOR MOORE)

• Programming languages (PROFESSORS KAPUR, STEFANOVIC, AND WILLIAMS)

• Security (PROFESSORS ACKLEY, CRANDALL, AND FORREST)

• Scientific visualization (PROFESSOR KNISS)

• Theory and algorithms (PROFESSORS HAYES, LUAN, MOORE, AND SAIA)

Table of Contents

I Work-in-progress: Automated Named Entity Extraction for Tracking Censor-
ship of Current Events
ANTONIO M. ESPINOZA,JEDIDIAH R. CRANDALL 5

II Internet Topology over Time
BENJAMIN EDWARDS, STEVEN HOFMEYR, GEORGE STELLE, AND STEPHANIE FORREST 12

III Progress in Spoken Programming
BENJAMIN M. GORDON 19

IV Enriching Chatter Bots With Semantic Conversation Control
CHAYAN CHAKRABARTI 25

V On the Viability of Compression for Reducing the Overheads of Checkpoint/Restart-
based Fault Tolerance
DEWAN IBTESHAM, DORIAN ARNOLD, PATRICK G. BRIDGES, KURT B. FERREIRA, AND RON BRIGHTWELL

28

VI Three Researchers, Five Conjectures: An Empirical Analysis of TOM-Skype
Censorship and Surveillance
JEFFREY KNOCKEL, JEDIDIAH R. CRANDALL, AND JARED SAIA 39

VII Formica ex Machina: Ant Swarm Foraging From Physical to Virtual and
Back Again
JOSHUA P. HECKER, KENNETH LETENDRE, KARL STOLLEIS, DANIEL WASHINGTON, AND MELANIE
E. MOSES 48

VIII Ovarian cancer relapse: micro-carcinomas vary in form with peritoneal
niche
KIMBERLY KANIGEL-WINNER, MARA STEINKAMP, SUZY DAVIES, ABBAS SHIRINIFARD, YI JIANG,
AND BRIDGET S. WILSON 61

IX Breaking the O(nm) Bit Barrier: Secure Multiparty Computation with a
Static Adversary

2

VARSHA DANI, VALERIE KING, MAHNUSH MOVAHEDI, AND JARED SAIA 64

X Life Wont Wait! (On the Slowdown of Asynchronous Automata Networks)
THOMAS P. HAYES, MICHAEL JANES, CHRISTOPHER MOORE 83

XI Optimal Population Size in Island Model Genetic Algorithms
NEAL HOLTSCHULTE 94

XII Implementation of an Embodied General Reinforcement Learner on a Serial
Link Manipulator
NICHOLAS MALONE, BRANDON ROHRER, LYDIA TAPIA, RON LUMIA, AND JOHN WOOD 109

XIII Quantification of Uncertainty in Parameters Characterizing Within-Host
West Nile Virus Infection
SOUMYA BANERJEE, MELANIE MOSES, ALAN S. PERELSON 118

XIV These go to eleven:Cranking up the knobs on IDS scaling performance
SUNNY JAMES FUGATE 120

XV Oriented and Degree-generated Block Models: Generating and Inferring
Communities with Inhomogeneous Degree Distributions
YAOJIA ZHU, XIAORAN YAN, AND CRISTOPHER MOORE 126

Work-in-progress: Automated Named Entity Extraction for Tracking
Censorship of Current Events

Antonio M. Espinoza
Computer Science Department

University of New Mexico
amajest@cs.unm.edu

Jedidiah R. Crandall
Computer Science Department

University of New Mexico
crandall@cs.unm.edu

Abstract

Tracking Internet censorship is challenging because what
content the censors target can change daily, even hourly,
with current events. The process must be automated be-
cause of the large amount of data that needs to be pro-
cessed. Our focus in this paper is on automated prob-
ing of keyword-based Internet censorship, where natu-
ral language processing techniques are used to generate
keywords to probe for censorship with. In this paper
we present a named entity extraction framework that can
extract the names of people, places, and organizations
from text such as a news story. Previous efforts to au-
tomate the study of keyword-based Internet censorship
have been based on semantic analysis of existing bod-
ies of text, such as Wikipedia, and so could not extract
meaningful keywords from the news to probe with.

We have used a maximum entropy approach for named
entity extraction, because of its flexibility. Our prelimi-
nary results suggest that this approach gives good results
with only a rudimentary understanding of the target lan-
guage. This means that the approach is very flexible, and
while our current implementation is for Chinese we an-
ticipate that extending the framework to other languages
such as Arabic, Farsi, and Spanish will be straightfor-
ward because of the maximum entropy approach. In this
paper we present some testing results as well as some
preliminary results from probing China’s GET request
censorship and search engine filtering using this frame-
work.

1 Introduction

There are many open questions about Internet censor-
ship, including how effective it is, what makes it effec-
tive, what kinds of targeted activities it is effective (or
is not effective) at stopping, and so forth. A first step
toward answering any of these questions is to collect
enough data to understand how censorship is applied and

what kinds of activities are targeted by the censors. This
implies automated probing that is broad and carried out
over a long period of time, because censorship within a
single country can vary from province to province, com-
pany to company, and technology to technology and what
content is targeted can change daily, even hourly.

1.1 Related work

Our focus in this paper is on keyword-based Internet cen-
sorship, and for the preliminary results we present we
are interested specifically in China. Keyword-based In-
ternet censorship in China has been studied by several
groups of researchers, but is not well understood. An
anonymous government official writing as “Mr. Tao”,
in a report published by Reporters Without Borders [7],
described three types of keywords: masked words, sen-
sitive words, and taboo words. According to Mr. Tao,
a keyword list is produced and updated by the Informa-
tion Office of the State Council. He adds, “each site adds
key-words to its own filters in order not to run the risk of
being criticised, punished or, worse still, closed down.”

One of the more thoroughly studied forms of keyword-
based Internet censorship is GET request filtering at
the router level, where GET request packets containing
blacklisted keywords cause routers in the backbone of
China’s Internet to forge reset packets and attempt to re-
set the TCP connection between the offending client and
server. In contrast to HTML response filtering, which
appears to have not been effective and may have been
discontinued [8], GET request filtering is very effec-
tive in terms of the ratio of offending connections that
are reset and is still pervasive on China’s Internet to-
day. The methods of China’s HTTP keyword filtering
were first published by the Global Internet Freedom Con-
sortium [4]. Clayton et al. [2] published a more de-
tailed study of this mechanism. The ConceptDoppler
project [3] found that HTTP keyword filtering in China is
not peremptory and is not strictly implemented at the bor-

5

der of the Chinese Internet, with a significant amount of
filtering occurring in the backbone. The ConcpetDoppler
project also used latent semantic analysis [6] to cluster
words from the Chinese-language version of Wikipedia
around sensitive concepts and then probe with these po-
tentially sensitive words to see if they are censored by the
GET request router-based mechanism. ConceptDoppler
initially produced a list of 122 words, and has produced
two more lists since.

Software that runs on servers in China, such as blog-
ging software, also implements keyword-based censor-
ship. One snapshot of a blacklist from a blog site is
available in a Human Rights Watch Report [5, Appendix
II] from 2006, for example. Client-side programs such
as chat clients also implement keyword censorship. A
blacklist for QQChat is available in the same report [5,
Appendix I], and Villeneuve [9] gives a high-level anal-
ysis of topics censored by the chat client that is part of
TOM-Skype.

Note that all of these lists are one-time-only snapshots.
Some of the lists are very different from others, suggest-
ing they come from different sources. Furthermore, our
preliminary results indicate that the HTTP GET request
blacklists that are used by routers in the backbone of
China’s Internet do not change on a daily, weekly, or even
monthly basis. Existing systems that can continuously
probe, such as ConceptDoppler, are based on document
summary techniques that cluster words based on concept
and therefore are not suitable for finding the named en-
tities that are relevant to current events. Such document
summary techniques can only compare documents and
terms to an existing corpus of text based on the semantics
that are latent in term and document frequencies, while
named entity extraction gives additional semantic infor-
mation about what a document is about based on its use
of named entities. Because of the lack of data about In-
ternet censorship and appropriate methods for gathering
the data broadly and over a long period of time we have
developed a named entity extraction framework, which
we present in this paper.

1.2 Structure of the rest of the paper
We discuss the implementation of our framework in Sec-
tion 2. Then we explain our experimental methodology
for our preliminary results in Section 3 followed by the
results in Section 4 and some concluding remarks.

2 Implementation

We implemented a named entity extraction (NEE) frame-
work by means of maximum entropy (ME) machine
learning. Borthwick et al. [1] demonstrated that an ME
approach to NEE allows for flexibility in the choice of

features to train on, since the interactions among fea-
tures are not as important as they would be in other ap-
proaches such as Hidden Markov Models or Maximum
Likelihood. We focused on three types of named enti-
ties: names of people, names of places, and names of
organizations.

Figure 1: The high-level workflow of our implementa-
tion.

Our NEE framework requires a training corpus that
has existing labels. That is, every word in the training
corpus should be labeled with one of four labels: as
a name of a person, name of a place, name of an
organization, or not any of these types of named entities.
The first three groups are then subdivided into complete,
beginning, middle or end of the type of label. This is
done so that it is possible for a named entity to span
multiple segments after segmentation. We used the
Chinese-language version of Wikipedia as our training
corpus. When people, places, or organizations appear in
Wikipedia, the reference is often a link to that person,
place, or organization. In addition to the labeled data
the ME framework also requires a feature vector for
each word in order to build a model of features that
correlate with particular labels. A feature is a property
of the labeled word. One example feature is whether the
word contains any characters that are common Chinese
surnames. Another example feature is if the word is
followed by a possessive such as Chinese � (de). The
following table is a complete list of features used.

2 6

Feature Test
Is place? Does the word translate to a

known place?
Has a name charac-
ter?

Does the word contain a
common name character?

Has punctuation? Does the word contain any
punctuation?

What punctuation (if
any)?

What punctuation does the
word contain?

Is month? Does the word contain the
character �?

Has capital letters? Does the translated word
contain roman characters
that are capitalized?

Has number? Does the word consist of
only roman numerals?

Has a Chinese num-
ber character?

Does the word contain a
Chinese number character
(����	...A).

Has de? Does the word contain the
symbol �?

Is a dictionary term? Is the word in a Chinese dic-
tionary?

Parts of Speech All the parts of speech the
translated word has.

Number characters The number of characters in
the word.

We used several heuristics to treat the Wikipedia cor-
pus as a labeled data set. We assumed the link was a label
for a name of a person if the document that was linked
to had tú� (year of birth), t�� (year of death), or
t��ºi�h (year of death person list) among its
categories. We assumed the link was a label for a name
of a place if the document that was linked to had GPS
coordinates associated with it or contained one of the fol-
lowing infoboxes: country, city, cncity (cn=Chinese), prc
provence (prc=Peoples Republic of China), or university.
Lastly, we assumed the link was a label for an organiza-
tion if it linked to an article that contained a company or
organization infobox.

In all of the experiments in this paper, we trained on
one third of the Wikipedia corpus using the above label-
ing scheme, and then tested on a different third of the
corpus. For both training and testing, we applied Chi-
nese text segmentation to the entire corpus to divide it
into words (because the Chinese written language does
not use spaces to divide sentences into words). Then we
assigned a feature vector to each word based on the word
itself, as well as the word that precedes and follows it.
We trained and tested each of the three types of named
entities separately.

Using an ME toolkit, we then assigned conditional
probabilities to each word for each sublabel conditioned

on its feature vector. Because the probabilites given were
for a word being the begining ’label’, middle ’label’, end
’label’, complete ’label’, or not a ’label’ (where ’label’ is
person, place, or organization), we had to find the high-
est probable legal path through the output. In order to be
a legal path sublabels must be in correct order, for ex-
ample end ’label’ cannot precede middle ’label’ legally.
Similary beginning, middle, and end ’label’ cannot be
surrounded by not ’label’ on both sides. In order to ac-
complish this we used the fact the output of the ME tookit
can implicitly be thought of as a directed acyclic graph.
Therefore we were able to preform a topological sort to
find the highest probable legal path.

For testing or for the actual probing experiments, we
take an unlabeled corpus of text (or a test set where the
labels are withheld), and then assign a label to each word
based on the ME model of the training set. We scale the
conditional probabilities in the model linearly so that we
get a desirable fraction of labeled words.

See Figure 1 for a high-level workflow of our im-
plementation. For probing, we have written parsers for
seven Chinese-language news websites. Our framework
downloads the news from these websites every day and
performs named entity extraction based on the model that
was created using Wikipedia. For any word that is la-
beled as a named entity, we include that word in our list
of keywords to probe with on that day. Our probing in-
frastructure performs two kinds of probes, it tests twelve
servers for HTTP GET request filtering based on forged
RSTs, and it tests two search engines to see if the word
elicits a legal message in Chinese stating that entries have
been removed from results for the search query. Our
probing infrastructure has multiple priority levels, with
levels with lower numbers being higher in priority for
testing. If a word is ever interpreted to be blacklisted, it
is placed in priority 0 so that it will be tested every 12
hours for the remainder of the probing. Words enter the
probing infrastructure at level 1. Every 12 hours level 0
words are probed, followed by level 1 words, then level
2, and so on. If a word does not appear to be blacklisted,
it is moved down one priority, except if it is in priority 0
in which case it remains in priority 0. There are 15 pri-
orities, with the lowest being 14. After a word has been
probed 14 times and does not appear to be censored, it
falls off the bottom of the list.

In order to get search engine results that are indepen-
dent of GET request censorship, we divide GET requests
for the two search engines we test against into separate
packets that will be reconstructed by the server but will
evade GET request filtering. For testing for forged RSTs,
we wait at least 100 seconds between each query for
any pair of IP addresses. As a special consideration, the
search engine results do not affect the priorities of key-
words, because we found this to cause many words that

3 7

were not actually targets of censorship to be in priority 0.
We record a traceroute to each server every hour, so that
any major changes in the keyword censorship that might
be due to changes in routing can be explained.

3 Expiremental Metholodogy

For the preliminary results we present in this paper, there
are two experiments that we performed. One experiment
is to measure the specificity and recall of the NEE frame-
work on a different third of Wikipedia than the training
set. This gives us baseline numbers to see how well the
NEE framework is performing. The other experiment for
which we have preliminary results is a test run of approx-
imately two months (with some downtime) in which we
ran the entire NEE and probing framework and obtained
some results that are censored topics from the news.

For the first experiment, we focus on specificity in-
stead of precision because of the context of probing with
keywords. Precision is the probability that a word la-
beled as a named entity actually is a named entity. Since
there are no human consumers of the output of our NEE
framework, precision is not as relevant. Any word that is
not a named entity but is labeled as such will be probed
with, perhaps unnecessarily, but this is relatively accept-
able compared to missing named entities. What we wish
to consider instead is how much extra probing we have to
do to ensure that we label a good fraction of the named
entities as named entities. Thus, recall and specificity are
better indicators of performance in our context than re-
call and precision. Recall is the probability that an actual
named entity is labeled as a named entity. Specificity is
the proportion of words that are not named entities that
are not labeled as named entities. Thus, as long as the
specificity remains high enough that NEE is saving us
about an order of magnitude of probing compared to just
probing with every word, we can trade off precision for
recall and achieve a high recall while greatly reducing
the amount of necessary probing.

For the second experiment, our initial two months of
running the entire infrastructure includes downloading
and parsing the news from seven sources every day, la-
beling the named entities, and probing for both GET re-
quest and search engine censorship. This data has var-
ious issues such as downtime and the need to remove
some polluted data manually, but gives promising anec-
dotal evidence that censorship of current events can be
detected using NEE. We provide a summary of the types
of words we found to evoke censorship and how the dif-
ferent forms of censorship seem to vary with the news,
with the caveat that these are preliminary results and no
certain conclusions can be drawn from them at this time.

4 Results

In this section we present both sets of results: results
from testing for the specificity and recall by withhold-
ing labels from the Wikipedia dataset, and preliminary
results from an initial two-month run of the entire infras-
tructure.

4.1 Specificity and recall
For labeling the names of people, we obtained the fol-
lowing results:

� Specificity: 83.44%

� Recall: 89.63%

� Precision: 0.42%

A precision of 0.42% is usually not considered to be
very good for a named entity extractor, but remember
that our context is different. One way to interpret these
results is that we can label only 16.6% of the words in
our dataset as names of people (thus reducing the amount
of probing necessary by nearly an order of magnitude),
and include 89.63% of the actual names of people in our
probing by doing so.

The results for names of places are as follows:

� Specificity: 69.80%

� Recall: 96.3%

� Precision: 0.77%

And, finally, the results for names of organizations are
as follows:

� Specificity: 88.40%

� Recall: 87.56%

� Precision: 0.28%

4.2 Initial two-month run
One of the more surprising results from our initial two
months of data is that the HTTP GET request blacklist
appears to be fairly static. That is, words do not seem
to be added to or removed from this particular censor-
ship blacklist on a daily, weekly, or even monthly basis.
We remind the reader that these are preliminary results
and our data has some downtime and other issues. How-
ever, our data was taken during a time of many reports of
arrests and censorship related to the Jasmine Revolution
protests in China in 2011, and despite many of these cur-
rent events being censored in search engines we probed

4 8

with these keywords for HTTP GET request censorship
and saw none that was related to any current event. Nor
did we see any evidence of any keyword being added or
removed in our preliminary results.

We did notice that current events evoked censorship
in search engines, however. Specifically, certain words
caused the search engine to return a warning that results
had been removed due to local laws. Note that this prob-
ably means that a website was removed that contained
the word we probed with and was highly ranked, it does
not mean that the word itself is on any keyword black-
list. This is an important distinction. We determined
that this is probably the case with the following exper-
iment. We searched for both “fuck” and “fuck you” in
both search engines that we used for probing. The word
“fuck” causes the message saying results have been re-
moved to appear, while “fuck you” does not cause the
message to appear. This suggests that this form of cen-
sorship is more topical and not based solely on a certain
byte string appearing in the query. However this does not
preclude a blacklist for search engine censorship.

We witnessed search engine censorship of certain
words from the news that we assert is definitely censor-
ship based on current events because of the words them-
selves. Some of the words are:

� 	�± (Jasmine Flower): related to the Jasmine
Revolution protests.

� ú�� (Nobel Prize), �H� (Mr. Liu), LIU,
Xiao, Liu, and *� (Norway): these are all related
to Liu Xiaobo winning the Nobel Prize while im-
prisoned by China.

� �A�, 77, �� (all mean the number 77): these
elicited censorship at a time when China’s President
was being criticized by many Chinese citizens. He
had visited a woman at her home during a live news-
cast, and asked her how much she pays for rent. She
replied that she paid 77 RMB, or approximately 12
dollars, per month. It is likely that she is on a gov-
ernment program and this is the small portion of
the actual rent that she pays, but many felt that she
had been coerced by the government to claim that
her rent was very low to make the government look
good.

� ��� (Wangfujing): this is an area in Beijing
where some of the Jasmine Revolution protests hap-
pened.

5 Concluding Remarks

In conclusion, our preliminary results are promising in
terms of building an infrastructure that can probe censor-
ship with words from current events. Our NEE algorithm

gives a good specificity and recall, and we demonstrated
that this infrastructure can produce instances of censor-
ship that are related to current events.

6 Acknowledgments

We would like to thank the anonymous FOCI review-
ers for their insightful comments. We would also like
to thank the many people who helped us improve our
translations and gave feedback on other aspects of the
paper. Fletcher Hazlehurst, Veronika Strnadova, Leif
Guillermo, and Ronald Garduno helped with various as-
pects of implementation or understanding of the max-
imum entropy framework and features. This material
is based upon work supported by the National Science
Foundation under Grant Nos. #0844880 and #1025442.
Antonio Espinoza and Jedidiah Crandall are also sup-
ported by the DARPA CRASH program.

References

[1] BORTHWICK, A., STERLING, J., AGICHTEIN, E.,
AND GRISHMAN, R. Exploiting diverse knowl-
edge sources via maximum entropy in named entity
recognition. In In the Proceedings of the Sixth Work-
shop on Very Large Corpora (1998), pp. 152–160.

[2] CLAYTON, R., MURDOCH, S. J., AND WATSON,
R. N. M. Ignoring the Great Firewall of China. I/S:
A Journal of Law and Policy for the Information So-
ciety 3, 2 (2007), 70–77.

[3] CRANDALL, J. R., ZINN, D., BYRD, M., BARR,
E., AND EAST, R. ConceptDoppler: a weather
tracker for Internet censorship. In Proc. of 14th ACM
Conference on Computer and Communications Se-
curity (CCS) (2007).

[4] The Great Firewall Revealed. Whitepaper released
by the Global Internet Freedom Consortium in De-
cember of 2002.

[5] “Race to the Bottom”: Corporate Complicity in Chi-
nese Internet Censorship. In Human Rights Watch
(August 2006). http://www.hrw.org/reports/

2006/china0806.

[6] LANDAUER, T. K., FOLTZ, P. W., AND LAHAM, D.
Introduction to latent semantic analysis. Discourse
Processes 25 (1998), 259–284.

[7] MR. TAO. China: Journey to the heart of Internet
censorship. Investigative report sponsored by Re-
porters Without Borders For Freedom and Chinese
Human Rights Defenders, Oct 2007.

5 9

[8] PARK, J. C., AND CRANDALL, J. R. Empiri-
cal study of a national-scale distributed intrusion
detection system: Backbone-level filtering of html
responses in china. In Proceedings of the 2010
IEEE 30th International Conference on Distributed
Computing Systems (Washington, DC, USA, 2010),
ICDCS ’10, IEEE Computer Society, pp. 315–326.

[9] VILLENEUVE, N. Breaching trust: An analysis
of surveillance and security practices on China’s
TOM-Skype platform. Available at http://www.
infowar-monitor.net/breachingtrust/.

6 10

11

Internet Topology over Time
Benjamin Edwards

University of New Mexico
bedwards@cs.unm.edu

Steven Hofmeyr
LBNL

shofmeyr@lbl.gov

George Stelle
University of New Mexico

stelleg@cs.unm.edu

Stephanie Forrest
University of New Mexico

forrest@cs.unm.edu

Abstract—There are few studies that look closely at how
the topology of the Internet evolves over time; most focus on
snapshots taken at a particular point in time. In this paper,
we investigate the evolution of the topology of the Autonomous
Systems graph of the Internet, examining how eight commonly-
used topological measures change from January 2002 to January
2010. We find that the distributions of most of the measures
remain unchanged, except for average path length and clustering
coefficient. The average path length has slowly and steadily
increased since 2005 and the average clustering coefficient has
steadily declined. We hypothesize that these changes are due
to changes in peering policies as the Internet evolves. We also
investigate a surprising feature, namely that the maximum degree
has changed little, an aspect that cannot be captured without
modeling link deletion. Our results suggest that evaluating models
of the Internet graph by comparing steady-state generated
topologies to snapshots of the real data is reasonable for many
measures. However, accurately matching time-variant properties
is more difficult, as we demonstrate by evaluating ten well-known
models against the 2010 data.

I. INTRODUCTION

The Internet is growing rapidly, having more than tripled
in size in the last decade, from 10,000 Autonomous Systems
(ASes) in 2002 to 34,000 in 2010. However, few studies have
looked carefully at the time evolution of the Internet topology
at the AS-level. Most studies consider a snapshot of the AS-
level topology of the Internet, derived from the latest data
available at the time of the research, e.g. [1], [2], [3], [4].

In this paper, we are interested in how the topology of the
AS-level Internet changes over time. We take the common
approach of regarding the Internet as a graph, where the
vertices are ASes and the edges are routing links between
them. There are many properties of the Internet graph that can
be investigated, from the simple degree distribution to more
complex measures such as betweenness centrality. We select
a set of eight commonly used measures that are relevant to
the way the Internet functions. The measures are described in
section II.

We investigate how the selected measures change over the
period from January 2002 to January 2010, and present the
results in section IV. We find that the distributions for most
of the measures remain unchanged except average path length
and clustering coefficient. Since 2005, the average path length
has slowly and steadily increased and the average clustering
coefficient has steadily declined. These results may signify
changes in peering relationships in the Internet; we discuss
this idea in section VI.

Our results imply that Internet topology models can be
evaluated using single snapshots of the topology in time for
many measures but not all. We can expect that models that
matched invariant measures five years ago will still match
today. To this end we include a brief summary of 10 well-
known models and their performance on the latest data set in
subsection IV-C. We find that models that were accurate when
originally proposed, often many years ago, still accurately
predict many time-invariant AS features (such as centrality),
while doing a poorer job on the time-variant measures, such as
clustering coefficient. In addition, the unchanging maximum
degree of the Internet is often poorly predicted.

II. TOPOLOGICAL PROPERTIES OF THE INTERNET

We selected a set of eight measures for our analysis of
Internet topology evolution. Although many more measures
are available, e.g., [5], [6], [7], [8], we chose those most
commonly used in the past to evaluate both generative models
and data of the actual AS topology [9]. Further, we selected
measures that seem most relevant to understanding the func-
tioning of the Internet. Table I summarizes the measures and
our rationales for choosing them. Given space limitations,
we restrict our attention to graph-based measures, ignoring
network operation constraints, traffic flow analysis, and distri-
butions of AS relationship types.

The measures are divided into four categories: Node Cen-
trality, Path Length, Community Structure, and Scale Free
Structures. We also track simple properties such as the maxi-
mum and average degree of ASes.

A. Node Centrality

Node centrality measures are related to the prominence of
ASes, which is important when evaluating the implications
of ISP regulation [10] or the robustness of the Internet [11].
We use three measures of centrality: the node degree, the be-
tweenness, which is the fraction of all shortest paths that pass
through a node [12], and the page rank, which is the number
of times that a node will be visited on a sufficiently long
random walk on the graph [13]. The betweenness centrality is
inversely related to the robustness of the graph to removal of
nodes, because the more paths that pass through a node, the
more damage will be done when that node is removed.

ar
X

iv
:1

20
2.

39
93

v1
 [

cs
.N

I]
 1

7
Fe

b
20

12

12

2

Measure Rationale
Degree Centrality Simplest way to measure AS prominence
Betweenness Centrality AS prominence under best (shortest-path) routing. Inversely related to robustness to node deletion
Page Rank Centrality AS prominence under average (random) routing.
Path Length Related to routing efficiency (hops between source and destination)
Clustering Coefficient Related to the peering structure of the Internet, and routing resilience (number of alternative routes)
K-Cores Decomposition Related to tier structure of the AS Graph
Assortativity Relevant to peering relations
S-Metric Distinguishes among scale-free graphs, alternate measure of assortativity

TABLE I
SUMMARY OF MEASURES.

B. Path Length

The average shortest path length from a node to all other
nodes in the graph (the geodesic distance)1 is important
because it relates to the number of routing hops between
ASes. Not all packets travel along the shortest paths because
of business agreements (such as the valley-free rule), but to a
first approximation, routing distances (hops on the AS graph)
are largely determined by the shortest paths.

Alternative path length measurements include diameter,
which is the longest of the shortest paths between all pairs
of nodes, and the effective diameter, which is the path length
that defines the 90th percentile of all paths [15]. In the Internet,
the distribution of path lengths has small variance, so diameter
and effective diameter are only slightly larger than the shortest
average path length and highly correlated with it. Hence we
use only the average shortest path length.

C. Community Structure

Community structure measures how groups of nodes form
substructures within the graph and is relevant to understanding
various aspects of the Internet, such as the tiered structure
and resilience to node deletions. Although there are many
community structure measures [16], [17], we chose three that
reveal important features of the AS graph. The first measure
is the local clustering coefficient, which is the number of
edges among the neighbors of a node as compared to the
maximum possible number [18].2 The clustering coefficient is
related to the resilience of the routing infrastructure, because
it reflects the number of alternative routes between pairs of
nodes (for example, a tree has a coefficient of 0 and the
removal of any edges will partition the graph). The second
community structure measure is degree assortativity, which
measures whether nodes tend to connect to others of similar
degree [19]. The final measure is k-cores decomposition, which
measures successive maximally connected subgraphs [20]. We
report two measures for k-cores: the distribution of k-cores
values, and the size of the maximum core, k-max.

1This is sometimes referred to as closeness centrality, though there are
other definitions for closeness centrality [14].

2We do not use transitivity, which is an alternative definition of the
clustering coefficient, because it tends to be highly correlated with the average
degree and so does not yield additional useful information.

D. Scale-free Structures

The power-law degree distribution of the AS graph is a
scale-free property often cited as a distinguishing feature of the
Internet, e.g., [3]. If the AS graph can be described as scale-
free it may share properties with other scale-free networks,
for example, the tendency to be ‘robust yet fragile’ or the
preferential attachment growth dynamic. However, Li et al [21]
showed that it is possible to construct graphs and general data
sets that have similar scale-free properties but very different
structures. To address this issue, Li et al. propose the s-
metric—the sum over edges of the product of the degree of the
two nodes an edge connects. This computation yields a single
value that measures the extent to which a graph is actually
scale-free.

III. DATA SETS

To investigate how the Internet changes over time, we
collected a set of AS graphs covering the period from January
2002 to January 2010 by parsing monthly snapshots of BGP
routing table dumps from Oregon Route Views and RIPE.3

Although BGP routing tables are dumped every few hours,
monthly snapshots were of sufficient temporal resolution given
the long time scale of the analysis. The monthly snapshots
were compiled by parsing all of the dumps from the first day
of each month, taking every adjacent pair in the ASPATH and
adding them to the graph for that month. We did not filter out
self loops, private Autonomous Systems Networks (ASNs),
or any other potential spurious or inaccurate results from the
dumps, as it is generally assumed that the number of false
positives of this type are small [22].

One potential problem with the BGP data is that nodes
and edges disappear and reappear due to the way the data
are sampled. While there are other ways of dealing with
disappearing edges and nodes [15], we assumed that nodes and
edges that temporarily disappear from the BGP tables actually
exist throughout from first appearance to last. Our data set is
available4 in networkx5 format.

To validate our results, we ran identical experiments using
data collected from the Cooperative Association of Internet
Data Analysis (CAIDA) [23], and obtained essentially identi-
cal results. The collectors of the CAIDA data sets went to great

3www.routeviews.org andwww.ripe.net
4https://ftg.lbl.gov/projects/asim/data-2/
5http://networkx.lanl.gov/

13

3

length to deal with various false-positive errors and the issue
of nodes and edges that temporarily disappear, so the close
agreement between the two data sets indicates that relatively
simple preprocessing of the data is adequate for the purposes
of our study.

Although false positives in the data are likely rare, false
negatives (missing links) are likely common because the BGP
dumps do not capture peering links between smaller ASes
on the edge of the graph.6 Although several studies have
attempted to quantify the number of missing links (e.g. [22],
[24], [25]), it is difficult to determine how exactly those hidden
links could affect the structure of the AS-graph. Consequently,
we focus on the visible Internet, in which we see subtle
topological changes (see section IV) that we speculate could
be caused by an increase in missing links.

IV. RESULTS

Most of the measures yield a distribution rather than a single
value. Although we can plot the distributions together, year by
year, it is also useful to have a single value for determining
the changes over time. A common approach to this problem
aggregates distributions, using measures of central tendency,
extent, or spread [9]. However, studying the distributions as a
whole before aggregating allows us to discover changes to the
shape of the distribution (e.g. a transition from an exponential
distribution to a power-law) that might not be revealed under
aggregation. Consequently, we test whether the distributions
between years differ using the Cramér–von Mises Criterion
(CMC) [26]. The CMC tests the hypothesis that two samples
of data are drawn from the same distribution. Although many
alternative tests and measures exist [27], [28], [29], the CMC
gives accurate comparisons and captures intuitive similarities
between plots that can be seen visually.

We used the CMC to identify year by year changes in
all of the measures that have distributions. Table II shows
the changes from one year to the next from 2002 to 2010.
For each year, we applied the measures to the AS-graph for
June; varying the month of data collection does not vary the
results. For measures that do not have distributions (k-max,
assortativity and the s-metric), Table II reports the absolute
values, rather than the year by year differences.

A. Unchanging Features

Table II shows that the node centrality measures (degree,
betweenness and page rank) stay constant over time. Figure 1
illustrates this point, showing that the power-law degree dis-
tribution is virtually identical over time. We obtain similar
results for betweenness and page rank—the distributions are
stable over time (data not shown).

In Figure 1 not only is the slope of the distribution un-
changing, but the extent (maximum degree) is nearly constant.
Only three ASes have had the maximum degree in the years
2002 to 2010: MCI Inc., Level 3 Communications, and Cogent
Communications (see Figure 2). MCI, which held the top

6Roughan et al [22] estimate that an AS graph extracted from public BGP
views is likely to miss 27% of links overall, and 70% of peer-to-peer links.

10−6 10−5 10−4 10−3 10−2 10−1

Degree Centrality k

10−5

10−4

10−3

10−2

10−1

100

P
r[
d
eg

(v
)
>
k

]

2002
2003
2004
2005
2006
2007
2008
2009
2010

Fig. 1. Complement cumulative distribution of the degree of ASes between
2002-2010

2002 2003 2004 2005 2006 2007 2008 2009
Date

0

500

1000

1500

2000

2500

3000

D
eg

re
e

Level 3 Comm.
MCI Inc.
Cogent Comm.

Fig. 2. Degree changes in the three largest degree ASes.

position until late 2008, maintained a nearly constant degree,
while Cogent and Level 3 had a nearly monotonic increase in
degree over the same time period. Growth is not guaranteed
for an AS: 61% of all ASes experienced a month to month
decline in degree at least once between 2002 and 2010 and
fully 84% of ASes that have existed for five or more years
experienced at least one monthly decline.

Other clearly unchanging features in Table II are the k-
cores and the degree assortativity. The s-metric appears to
gradually increase over the entire period, but this could be a
meaningless change: According to Li et al. [21], graphs with
low s-metric values (below 0.1) are likely “scale-rich” and
difficult to differentiate from each other using the s-metric.

B. Changing Features

Two measures exhibit distinct changes over time: the av-
erage path length and the clustering coefficient. The changes
in the distribution of path length, although statistically signifi-
cant, are not easily visible on a plot. The clustering coefficient,
on the other hand, has changes that are clearly visible, as can

14

4

Year Nodes Edges Degree Betweenness Page Rank Path Length Clustering K-Cores K-max Assort. S-Metric
2002 13172 26695 16 -0.189 .0114
2003 15446 32089 NS NS NS **** NS NS 18 -0.188 .0121
2004 17722 39654 NS NS NS **** NS NS 22 -0.188 .0159
2005 20174 45505 NS NS NS **** NS NS 24 -0.196 .0176
2006 22708 50796 NS NS NS **** * NS 24 -0.189 .0183
2007 25691 58200 NS NS NS **** NS NS 26 -0.189 .0199
2008 28640 64111 NS NS NS **** ** NS 25 -0.192 .0203
2009 31645 69938 NS NS NS **** * NS 25 -0.195 .0210
2010 34055 71544 NS NS NS **** **** NS 21 -0.191 .0179

TABLE II
ANNUAL CHANGE OF MEASURES. WE REPORT COMPUTED VALUES FOR K-MAX, ASSORTATIVITY AND S-METRIC. FOR OTHER MEASURES, WE REPORT
THE STATISTICAL SIGNIFICANCE OF THE CHANGE BETWEEN YEARS (NS: NOT SIGNIFICANT, *: p < .1, **: p < .05, ***: p < .01, **** : p < .001).

0.0 0.2 0.4 0.6 0.8 1.0
Local Clustering cc

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

P
r[
X
>
cc

]

2002
2003
2004

2005
2006
2007

2008
2009
2010

Fig. 3. Complement cumulative distribution of the local clustering coefficient
of the AS graph

be seen in Figure 3. Although the distribution changes little
in shape, there is a distinct downward trend over time.

The trends in path length and clustering coefficient are
evident in Figure 4, which plot averages over time. We can see
that around 2005, the structure of the visible AS graph began
to change. The average path length and average clustering
coefficient do not exhibit any clear trend until mid 2005, when
they began slowly increasing and decreasing respectively. In
addition, the k-max value was steadily increasing up to 2005,
after which it leveled off (see Table II). From these changes
we can infer that both the efficiency of the visible Internet (as
measured by number of hops on the shortest paths between
locations) and resilience to router failure, have been decreasing
since 2005. We discuss possible reasons for these changes in
section VI.

The shift in topology beginning in 2005 indicates that
the Internet has not reached steady-state. This observation
contradicts many models of the AS graph, in which measures
converge to a steady-state distribution. The next section studies
how well different models of Internet topology match the AS
graph on the different measures.

2002 2003 2004 2005 2006 2007 2008 2009 2010
Date

3.60

3.65

3.70

3.75

3.80

3.85

3.90

A
ve

ra
ge

Pa
th

L
en

gt
h

Averate Path Length
Average Clustering Coefficient

0.20

0.22

0.24

0.26

0.28

0.30

0.32

A
ve

ra
ge

C
lu

st
er

in
g

C
oe

ffi
ci

en
t

Fig. 4. The change in the average path length and the average clustering
coefficient, plotted monthly. Both clustering coefficient and path length
experience a nearly constant variance of .16 and .3 respectively, and so we
do not report error bars in this figure.

C. Topological Models of the Internet

The relatively slow changes we see in the Internet imply that
generative models that give accurate results at one size should
do so at most sizes. To check this we generated topologies
from 10 different models and compared them to the AS graph
from June 2010. Table III lists the models we considered. In
each case, we generated a topology of 34,055 nodes, the same
number as our latest snapshot of the AS graph.

The comparisons of the different models to the AS graph are
shown in Figure 5. As expected, later models are more accurate
than earlier models (the models are ordered from oldest at the
top to most recent at the bottom). All models generate close
matches to the degree distribution, which makes sense because
this is typically the first measure authors use to evaluate a
model, and it has not changed over time. Further, most models
match the other measures of centrality quite well, presumably
because they are also time-invariant.

It is notable that all the models perform worst on the
measures that change the most, namely path length and cluster-
ing. In general, models match time-invariant measures better
than time-varying measures, with the exception of maximum
degree, which no model captures well.

15

5

Name Abbr. Description Reference
Barábasi-Albert BA Original preferential attachment model [1]
Heuristically Optimized Trade-offs FKP Local optimization model [30]
Generalized Linear Preference GLP Modified preferential attachment model [31]
Univariate Heuristically Optimized Trade-offs UFKP Modified local optimization model [32]
Bivariate Heuristically Optimized Trade-offs BFKP Modified local optimization model [32]
Multivariate Heuristically Optimized Trade-offs MFKP Modified local optimization model [32]
Interactive Growth IG Modified preferential attachment model [33]
Positive Feedback Preference (1) PFP1 Modified IG model [33]
Positive Feedback Preference (2) PFP1 Modified PFP1 model [33]
ASIM ASIM Agent based topology generator [10]

TABLE III
SUMMARY OF MODELS EVALUATED.

Numbe
r of

Edg
es

M
ax

Deg
re

e

Ave
ra

ge
Deg

re
e

Deg
re

e

Pag
e Ran

k

Betw
ee

nnes
s

Pat
h Len

gt
h

Clu
ste

rin
g

K-C
or

es

K-m
ax

Ass
or

ta
tiv

ity

S-M
etr

ic

BA (1999)
FKP (2002)
GLP (2002)

UFKP (2003)
BFKP (2003)
MFKP (2003)

IG (2004)
PFP1 (2004)
PFP2 (2005)
ASIM (2011) 0.0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Fig. 5. Evaluating models. The color of each square corresponds to
the statistical significance level for the Cramér-von Mises criterion when
comparing the model to the January 2010 AS graph for a given measure.
The number of stars (0 to 4) is scaled between 0 and 1 for consistency
with the other measures. For k-cores, degree assortativity and the s-metric,
the color corresponds to the relative error. Hence lower values mean more
similar distributions. X’s indicate that the measure was reported in the original
publication of the model.

It is not surprising that most generative models we studied
performed well on the time-invariant measures the models
were originally tested on. However, most models perform
much worse on measures they were not originally tested
against. This indicates the importance of evaluating models
against a wide variety of measures, because many different
graphs can be similar in one measure, but it is much harder
for different graphs to be similar in multiple measures.

V. RELATED WORK

There are few studies that look at changes in topological
characteristics beyond the number of nodes and edges. Most
of those that do focus on inter-AS relationships, for example,
Chang et al [34] study the changes in customer-provider rela-
tionships and find that the number of providers is increasing
over time. Another approach was taken by Oliveira et al [35],
in which they investigate the changing relationship over time
between stub ASes and transit providers. They find that the
net growth of rewirings for transit providers levels off at the
end of 2005, around the same time our results show subtle

changes in the Internet. Gill et al [36] look more closely at
the evolution of peering relationships, and find that over time
large content providers are relying less on Tier-1 ISPs, and
more on peering with lower tiers. This finding is supported by
Labovitz et al [37], who report a rapid increase in the traffic
flow over peer links over time, resulting in a less hierarchical
Internet topology. These observations could potentially explain
some of our results, as we discuss in section VI.

In addition to studying business relationships, Dhamdhere
el al [38] reported on changes in average degree and average
path length over time. Their results on path length agree with
ours, although their study included only data up to 2007, so
the trends are less clear. Because the degree distribution does
not change, it is likely that the shift they see in average degree
is a result of a steadily increasing sample size. Another study
[39] used spectral analysis to investigate clustering on the AS
graph, and study coreness and changing path diversity. This
analysis, however, covers short time spans (at most two and a
half years), and only considers data before 2004.

The work of Zhang et al [40] is perhaps closest to ours. They
study changes in several topological measures over the time
period from 2001 to 2006. Because of this time period, their
results do not capture the trends we report post-2005. However,
the changes they document agree with what we observed in
the earlier period: They find the assortativity and k-cores are
stable over time and from 2004/2005 onwards, the k-max
value changes little. Further, they find the average clustering
coefficient starts declining around 2005, and the average path
length starts increasing gradually.

VI. DISCUSSION

We have reported a distinct shift in the topology of the
visible Internet since 2005: the average path length is in-
creasing, and the average clustering coefficient is decreasing
(Figure 4). On the surface, it would appear that the Internet is
getting both less efficient and less resilient. But this may not
actually be the case, because the the shift is likely caused by
changes in peering policies that affect the hidden Internet and
cannot be measured with public BGP dumps. As mentioned
in section V, there are several studies showing that content
providers are routing more traffic over hidden peer-to-peer
links, and relying less on the more publicly visible Internet

16

6

infrastructure. Consequently they have less need to establish
new customer-provider links, and a decreasing number of new
customer-provider links increases the observed average path
length of the graph.

Most models match topological measures that are invariant
over time in the AS graph, particularly centrality. However
performance degrades when examining time-variant measures
such as average path length and clustering coefficient. Fu-
ture modeling efforts will need to focus on incorporating
mechanisms that can cope with such changing dynamics. For
example, few existing models allow for the loss of links
in the AS graph, a common feature according to our data.
Agent-based models such as ASIM are potentially a promising
direction for future AS topology modeling efforts because
they can naturally model economic pressures that lead to link
deletion. Further, robust statistical techniques such as the CMC
will be needed to verify topological results.

In conclusion, it is surprising that so few of the common
measures of Internet topology have changed over the past eight
years, even though the number of ASes has tripled during
this time period. Those measures that do change point to the
increasing importance of understanding the role of policy and
economics in determining Internet topology. Going forward,
it will be increasingly important to find ways to reveal hidden
links and evolving peering relationships.

VII. ACKNOWLEDGMENTS

The authors gratefully acknowledge the support of DOE
grant DE-AC02-05CH11231. Stephanie Forrest acknowl-
edges partial support of DARPA (P-1070-113237), NSF
(EF1038682,SHF0905236), and AFOSR (Fa9550-07-1-0532).

REFERENCES

[1] A. Barabási and R. Albert, “Emergence of Scaling in Random Net-
works,” Science, vol. 286, no. 5439, 1999.

[2] S. Zhou and R. J. Mondragón, “The rich-club phenomenon in the internet
topology,” CoRR, vol. cs.NI/0308036, 2003.

[3] A. Clauset, C. Rohilla Shalizi, and M. E. J. Newman, “Power-law
distributions in empirical data,” ArXiv e-prints, Jun. 2007.

[4] P. Holme, J. Karlin, and S. Forrest, “An integrated model of traffic,
geography and economy in the internet,” CoRR, vol. abs/0802.3283,
2008.

[5] M. Piraveenan, M. Prokopenko, and A. Y. Zomaya, “Local assortativity
and growth of internet,” The European Physical J. B, vol. 70, 2009.

[6] C. Song, S. Havlin, and H. A. Makse, “Self-similarity of complex
networks,” Nature, vol. 433, Jan. 2005.

[7] L. da F. Costa, F. A. Rodrigues, G. Travieso, and P. R. V. Boas,
“Characterization of complex networks: A survey of measurements,”
Advances in Physics, vol. 56, 2007.

[8] P. Mahadevan, D. Krioukov, M. Fomenkov, X. Dimitropoulos, k. c.
claffy, and A. Vahdat, “The internet as-level topology: three data sources
and one definitive metric,” SIGCOMM Comput. Commun. Rev., vol. 36,
Jan. 2006.

[9] H. Haddadi, D. Fay, A. Jamakovic, O. Maennel, A. W. Moore,
R. Mortier, M. Rio, and S. Uhlig, “Beyond node degree: Evaluating
as topology models,” CoRR, vol. abs/0807.2023, 2008.

[10] S. Hofmeyr, T. Moore, S. Forrest, B. Edwards, and G. Stelle, “Modeling
internet-scale policies for cleaning up malware,” in Proc. WEIS, 2011.

[11] J. C. Doyle, D. L. Alderson, L. Li, S. Low, M. Roughan, S. Shalunov,
R. Tanaka, and W. Willinger, “The ”robust yet fragile” nature of the
Internet,” PNAS, vol. 102, no. 41, Oct. 2005.

[12] L. C. Freeman, “A set of measures of centrality based on betweenness,”
Sociometry, vol. 40, no. 1, 1977.

[13] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web
search engine,” in Seventh International World-Wide Web Conf., 1998.

[14] G. Sabidussi, “The centrality index of a graph,” Psychometrika, vol. 31,
no. 4, Dec. 1966.

[15] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graph evolution: Den-
sification and shrinking diameters,” ACM Trans. Knowl. Discov. Data,
vol. 1, Mar. 2007.

[16] L. C. Freeman, “Finding social groups: A meta-analysis of the southern
women data,” in Dynamic Social Network Modeling and Analysis. The
National Academies, 2003.

[17] S. Fortunato, “Community detection in graphs,” Physics Reports, vol.
486, no. 3-5, 2010.

[18] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’
networks.” Nature, vol. 393, no. 6684, 1998.

[19] M. E. J. Newman, “Mixing patterns in networks,” Phys. Rev. E, vol. 67,
2003.

[20] S. B. Seidman, “Network structure and minimum degree,” Social Net-
works, vol. 5, no. 3, 1983.

[21] L. Li, D. Alderson, J. Doyle, and W. Willinger, “Towards a theory
of scale-free graphs: Definition, properties, and implications,” Internet
Mathematics, vol. 2, no. 4, 2005.

[22] M. Roughan, S. J. Tuke, and O. Maennel, “Bigfoot, sasquatch, the yeti
and other missing links: what we don’t know about the as graph,” in
Proc. ACM SIGCOMM IMC, 2008.

[23] K. Claffy, “Border gateway protocol (bgp) and traceroute data workshop
report,” Cooperative Association for Internet Data Analysis (CAIDA),
Tech. Rep., Oct 2011.

[24] R. Cohen, “The internet dark matter: on the missing links in the as
connectivity map,” in in Proc. IEEE INFOCOM, 2006.

[25] Y. He, G. Siganos, M. Faloutsos, and S. Krishnamurthy, “Lord of
the links: a framework for discovering missing links in the internet
topology,” IEEE/ACM Trans. Netw., vol. 17, pp. 391–404, April 2009.

[26] T. W. Anderson, “On the distribution of the two sample cramer von
mises criterion,” Ann. Math. Stat., vol. 33, pp. 1148–1159, 1962.

[27] J. Lin, “Divergence measures based on the shannon entropy,” IEEE
Transactions on Information theory, vol. 37, 1991.

[28] A. Kolmogoroff, “Confidence limits for an unknown distribution func-
tion,” The Annals of Mathematical Statistics, vol. 12, no. 4, 1941.

[29] D. T. L. C. G. Rogers, Numeric methods in finance. Cambridge
University Press, 1997.

[30] A. Fabrikant, E. Koutsoupias, and C. Papadimitriou, “Heuristically
optimized trade-offs: A new paradigm for power laws in the internet,”
in Automata, Languages and Programming, 2002, vol. 2380.

[31] T. Bu and D. Towsley, “On distinguishing between internet power law
topology generators,” in Proc. INFOCOM, vol. 2, 2002.

[32] H. Chang, S. Jamin, and W. Willinger, “Internet connectivity at the
AS-level: an optimization driven modeling approach,” in Proc. ACM
SIGCOMM MoMeTools Workshop, 2003.

[33] S. Zhou and R. J. Mondragón, “Accurately modeling the internet
topology,” Phys. Rev. E, vol. 70, no. 6, Dec 2004.

[34] H. Chang, S. Jamin, and W. Willinger, “To peer or not to peer: Modeling
the evolution of the Internet’s AS-level topology,” in Proc. INFOCOM,
2006.

[35] R. Oliveira, B. Zhang, and L. Zhang, “Observing the evolution of
internet as topology,” in University of Cambridge, Computer Laboratory.
His, 2006.

[36] P. Gill, M. Arlitt, Z. Li, and A. Mahanti, “The flattening internet
topology: natural evolution, unsightly barnacles or contrived collapse?”
in Proc. PAM, 2008.

[37] C. Labovitz, S. Iekel-Johnson, D. McPherson, J. Oberheide, and F. Ja-
hanian, “Internet inter-domain traffic,” in Proceedings of the ACM
SIGCOMM 2010 conference on SIGCOMM, ser. SIGCOMM ’10. New
York, NY, USA: ACM, 2010, pp. 75–86.

[38] A. Dhamdhere and C. Dovrolis, “Ten years in the evolution of the
internet ecosystem,” in Proc. IMC, 2008.

[39] M. Gaertler, “Dynamic analysis of the autonomous system graph,” in
Proc. IPS, 2004.

[40] G.-Q. Zhang, G.-Q. Zhang, Q.-F. Yang, S.-Q. Cheng, and T. Zhou,
“Evolution of the internet and its cores,” New J. of Physics, vol. 10,
no. 12, 2008.

17

18

Progress in Spoken Programming

Benjamin M. Gordon
George F. Luger

Department of Computer Science
University of New Mexico

Abstract

The dominant paradigm for programming a computer today is text entry via keyboard and
mouse, but there are many common situations where this is not ideal. For example, tablets
are challenging the idea that computers should include a keyboard and mouse. The virtual
keyboards available on tablets are functional in terms of entering small amounts of text, but
they leave much to be desired for use as a keyboard replacement. Before tablets can can become
truly viable as a standalone computing platform, we need a programming environment that
supports non-keyboard programming.

An introduction to this research was presented at the UNM CS Student Conference in
2011 [8]. In this paper, we describe progress and lessons learned so far.

1 Introduction

The dominant paradigm for programming a computer today is text entry via keyboard and mouse.
Keyboard-based entry has served us well for decades, but it is not ideal in all situations. People
may have many reasons to wish for usable alternative input methods, ranging from disabilities or
injuries to naturalness of input. For example, a person with a wrist or hand injury may find herself
entirely unable to type, but with no impairment to her thinking abilities or desire to program.
What a frustrating combination!

Furthermore, with the recent surge in keyboard-less tablet computing, it will not be long before
people want to program directly on their tablets. Today’s generation of tablets are severely limited
in comparison to a desktop system, suitable for viewing many forms of content, but not for cre-
ating new content. Newly announced products already claim support for high-resolution screens,
multicore processors, and large memory capacities, but they still will not include a keyboard. It
is certainly possible to pair a tablet with an external keyboard if a large amount of text entry
is needed, but carrying around a separate keyboard seems to defeat the main ideas of a tablet
computer.

What is really needed in these and other similar situations is a new input mechanism that
permits us to dispose of the keyboard entirely. Humans have been speaking and drawing for far
longer than they have been typing, so employing one of these mechanisms seems to make the most
sense. Products such as Apple’s Siri have demonstrated the usefulness of systems built around non-
keyboard inputs. In this research, we consider the problem of enabling programming via spoken
input.

1

19

Successful dictation software already exists for general business English, as well as specialized
fields like law and medicine, but no commercial software exists for “speaking programs.” Visual
and multimedia programming has been an active research area for at least 30 years, but systems for
general-purpose speech-based programming are rare. Several researchers have attempted to retrofit
spoken interfaces onto existing programming languages and editors [2,3,5], but these attempts have
all suffered from the same problem: existing languages were designed for unambiguous parsing and
mathematical precision, not ease of human speech.

This research addresses the topic in two specific ways: through the creation of a new spoken
programming language, and through the creation of an editing environment for the language.

2 Related Work

This research has been previously described in [8] and [9].
In terms of other research, the idea of adding speech support to an existing language is not new.

In 1997, Leopold and Ambler added voice and pen control to a visual programming language called
Formulate [11].

More recently, Désilets, Fox and Norton created VoiceCode [5] at the National Research Center
in Canada. Begel and Graham studied how programmers verbalized code [3]. Based on this study,
Begeland Graham developed a spoken variant of Java called Spoken Java. In addition to the
Spoken Java language syntax, Begel and Graham developed a suitable plugin (SPEED) for the
Eclipse development environment to enable speech input [3, 4].

Arnold, Mark and Goldthwaite proposed a system called VocalProgramming [2]. Their system
was intended to take a context free grammar (CFG) for a programming language and automatically
create a “syntax-directed editor,” but the system appears to have never been implemented.

Shaik et al. created an Eclipse plugin called SpeechClipse to permit voice control of the Eclipse
environment itself [12]. They permitted dictation of “well-known programming language keywords,”
but primarily concentrated on providing access to the menu and keyboard commands available in
Eclipse.

Outside the realm of traditional programming languages, Fateman considered the task of speak-
ing mathematical expressions [7]. He created a system that produced TEX output from a spoken
form of equations.

3 Progress

This research project is made of two components: The programming language itself, and the de-
velopment environment.

3.1 Spoken Programming Language

The language is a simple imperative language with English-like syntax for the supported constructs.
It supports simple loops, conditionals, functions, and variables of a few basic data types. The syntax
and supported features are more completely described in [10].

A mostly-complete compiler has been created that takes the textual form of the language as
input and produces programs that run on the Java JVM as output. It uses ANTLR [1] as the
parser engine and produces Java as an intermediate language. All of the major constructs of the

2

20

language are implemented (assignments, loops, function calls, etc), and the compiler is capable of
compiling a large number of programs that solve real (though small) classic problems in computer
science.

As originally anticipated, the syntax appears extremely verbose compared to traditional pro-
gramming languages, but experience has shown that the extra verbosity is largely mitigated by
the rhythms of comfortable English speech in practice. As an example, here is a tiny, “Hello,
World”-style program that prints the number 42 and exits:

define function main taking no arguments as

print 42

return 0

end function

As a slightly larger example, this program prints n! for n ranging from 0 through 9 using a naive
recursive factorial implementation:

define function factorial taking arguments N as

if N < 2 then

return 1

else

set X to N - 1

set Z to the result of calling factorial with X

return N * Z

end if

end function

define function main taking no arguments as

set I to 0

while I < 10 do

set Y to the result of calling factorial with I

print Y

new line

set I to I + 1

end while

return 0

end function

The primary component missing from the proposed compiler features is type inference. Imple-
mentation of this feature is underway; currently, the compiler infers that every variable is an integer
(notice that the examples above are compilable under this restriction).

3.2 Programming Environment

Unlike a traditional text-based programming language, a spoken programming language isn’t much
good without an environment to support entry and editing. The environment for this programming
language is built as a plugin for the Eclipse IDE [6], using CMU Sphinx [13] as the voice recognition
component.

3

21

The Eclipse plugin currently allows basic dictation of program text. It does not yet support
editing or debugging commands. Additionally, due to the way Sphinx handles grammar-based
recognition, the entire program must be spoken without a pause for it to be successfully recognized.
The “print 42” program above can be dictated, but the second example is too long for normal
humans to get through without needing a breath. Correcting this deficiency is the current primary
focus of development in this area.

4 Future Work

The compiler and Eclipse plugin are expected to be finished in summer of 2012. After some
initial sanity testing and feedback from early users, the effectiveness of the complete system will be
evaluated through a user study. We anticipate beginning this study in fall of 2012.

5 Conclusion

The idea of programming a computer through voice input is not a new one, but the rise of tablet
computing has made it more relevant than ever. The creation of a new programming language
and an associated environment for voice input was proposed in spring 2011. Implementation of
this idea is proceeding apace and will soon be ready for testing. Upon completion of the editing
environment, we expect that these additions will result in a measurable improvement in the speed
and accuracy with which code can be produced via speech.

References

[1] ANTLR Parser Generator. http://www.antlr.org/, Retrieved April 13, 2012.

[2] Stephen C. Arnold, Leo Mark, and John Goldthwaite. Programming by voice, vocalprogram-
ming. In Proceedings of the fourth international ACM conference on Assistive technologies,
Assets ’00, pages 149–155, New York, NY, USA, 2000. ACM.

[3] Andrew Begel and Susan L Graham. Spoken programs. Visual Languages and Human-Centric
Computing, 2005 IEEE Symposium on, pages 99 – 106, 2005.

[4] Andrew Begel and Susan L Graham. An assessment of a speech-based programming en-
vironment. Visual Languages and Human-Centric Computing, 2006. VL/HCC 2006. IEEE
Symposium on, pages 116–120, 2006.

[5] A Désilets, DC Fox, and S Norton. Voicecode: an innovative speech interface for programming-
by-voice. CHI’06 extended abstracts on Human factors in computing systems, pages 239–242,
2006.

[6] Eclipse: The eclipse foundation open source community website. http://www.eclipse.org/,
Retrieved January 10, 2011.

[7] R Fateman. How can we speak math? Journal of Symbolic Computation, Jan 1998.

4

22

[8] Benjamin M. Gordon. Developing a Language for Spoken Programming. In UNM Computer
Science Student Conference, pages 3–10, http://www.cs.unm.edu/~csgsa/unm-cs-conf7.

pdf, April 2011.

[9] Benjamin M. Gordon. Developing a Language for Spoken Programming. In Proceedings of the
Twenty-Fifth AAAI Conference on Artificial Intelligence, pages 1847–1848, August 2011.

[10] Benjamin M. Gordon. Developing a Language for Spoken Programming (Dissertation Pro-
posal). http://www.cs.unm.edu/~bmgordon/proposal-bmg.pdf, May 2011.

[11] J.L. Leopold and A.L. Ambler. Keyboardless visual programming using voice, handwriting,
and gesture. In Visual Languages, 1997. Proceedings. 1997 IEEE Symposium on, pages 28 –35,
September 1997.

[12] S Shaik, R Corvin, R Sudarsan, F Javed, Q Ijaz, S Roychoudhury, J Gray, and B Bryant.
Speechclipse: an eclipse speech plug-in. Proceedings of the 2003 OOPSLA workshop on eclipse
technology eXchange, pages 84–88, 2003.

[13] CMU sphinx - speech recognition toolkit. http://cmusphinx.sourceforge.net/, Retrieved
January 15, 2011.

5

23

24

Enriching Chatter Bots With Semantic Conversation Control

Chayan Chakrabarti
Department of Computer Science, University of New Mexico, Albuquerque, NM 87131

cc@cs.unm.edu

Abstract
Businesses deploy chatter bots to engage in text-based
conversations with customers that are intended resolve their
issues. However, these chatter bots are only effective in
exchanges consisting of question-answer pairs, where the
context may switch with every pair. I am designing a
semantic architecture that enables chatter bots to hold short
conversations, where context is maintained throughout the
exchange. I leverage specific ideas from conversation
theory, speech acts theory, and knowledge representation.
My architecture models a conversation as a stochastic
process that flows through a set of states. The main
contribution of this work is that it analyses and models the
semantics of conversations as entities, instead of lower level
grammatical and linguistics forms. I evaluate the
performance of the architecture in accordance with Grice’s
cooperative maxims, which form the central idea in the
theory of pragmatics.

 Motivation and Problem Statement
Communicating with chatter bots has come a long way,
from pioneering AI demonstrations like ELIZA, to modern
software like Siri. Many businesses also realize their
customer service operations using chatter bots as virtual
representatives (www.goarmy.com, www.alaskaair.com).
But communication with these chatter bots takes the form
of successive question-answer pairs, where the context
may switch with every pair. The main goal of this work is
to design an integrated architecture that enables the chatter
bot go beyond mere question-answer exchanges, to hold a
short conversation, where the context is maintained
throughout the exchange. The domain is restricted to
customer service situations through text-based chat. The
chatter bot answers FAQ type questions, resolves customer
service issues, spots opportunities during the conversation
to disseminate unsolicited information (information about
related services and promotions), and evaluates the
semantic flow of the conversation. If the flow of the
conversation requires the chatter bot to pursue a course of

action beyond its programmatic capabilities, it realizes this
and transfers the conversation to a human representative.
 Conversation theory defines a formal framework for
shared construction of knowledge between multiple
conversationalists (Pask 1976). A conversation is a process
that flows through a set of states (Winograd and Flores
1986). The set of states represents a speech act (GoldKuhls
2003). A conversation can have several semantic states
(Ginsburg 2008). The states are proxy indicators of
customer satisfaction (Stolcke et al. 1998). Sentiment
detection (Pang and Lee 2008) is also another indicator
that influences conversations. Hence customer satisfaction
can be measured by observing the flow of a conversation
through various states (Twitchell et al. 2004).
 While the proposed research borrows ideas from other
works, it solves a distinct problem. I am not modeling the
low level abstractions of sentences, phrases, and words, or
linguistic artifacts of grammar, discourse resolution, and
parts of speech. I consider conversations to be the unit of
analysis. Each conversation segment is a data point. I am
analyzing and modeling the conversation itself, and not the
lower level grammatical minutia that form individual
components of the conversation. Furthermore, I am
exploring well-structured conversations in a fixed domain.

Semantic Conversation Architecture
The key aspects of holding a conversation are what to say,
and how to say it, which are handled by the Knowledge
Engine (KE), and the Conversation Engine (CE) in the
chatter bot architecture. The Chat Interface (CI) directly
interfaces with the user, and has modules for pre-
processing the raw text input, identifying the Speech Act,
Sentiment, and Topic associated with the utterance, and
passing this information to the CE and KE. See Figure 1.
 The KE contains a Speech Acts Hash Set (SAHS) and a
Topic Hash Set (THS). The SAHS is a data structure that

25

Figure 1: Overview of Chatter Bot Architecture.

stores the Speech Acts in the form of probabilistic finite
state automata. The probabilities are learned from a corpus

Figure 2: Conversation Speech Act represented by a

probabilistic finite state automaton.

of conversations. The THS is a data structure containing
specific information about the domain. The information is
organized in the form of Goal-Fulfillment Maps (O’Shea et
al. 2010) and ontologies.
 The CE contains the probabilistic finite state
representation of the conversation Speech Act. One such
example, shown in Figure 2, consists of 8 states: Greeting
(includes small talk), Elicitation (trying to understand
issue), Troubleshooting (working through steps to
understand the issue), Resolution, Dissatisfaction,
Dissemination (give unsolicited information such as
possible promotions), and Conclusion. The CE also has a
conversation planner (CP) containing a simple decision

tree that engineers the conversation towards satisfactory
states, guided by the transition matrix of the automaton.

Hypotheses, Datasets, and Validation
There are two specific hypotheses. First, the knowledge
representation framework will have sufficient
representation power to model domain knowledge. Second,
the semantic conversation control algorithm will be able to
detect transitions in conversation states, predict outcomes,
and use this knowledge to control the conversation.

 I am using four corpora of logged chat sessions. Each
corpus has several million lines of chat, split in to distinct
chat sessions. Two contain chat logs from human-led
sessions, and two contain chat logs from chatter bot led
sessions in the same domain.

The performance of my chatter bot is evaluated
according to Grice’s maxims of cooperation (Grice 1989):
quality (bot gives correct information), quantity (bot is
informative as needed), relation (conversation is relevant
to discussion), and manner (conversation is unambiguous).

Current and Future Work
I had an internship at NextIT in Spokane, WA, where I had
access to real-world corpora for testing my approach. I
have implemented a prototype of the CE. Future work
includes implementing the KE, the CI, and experimenting
with conversation strategies in the CP.

References
Ginzburg, J. 2008. Semantics for Conversation. King’s College,
London. CSLI Publications.
GoldKuhl, G. 2003. Conversation Analysis as a Theoretical
Foundation for Language Action Approaches? 8th Int’l Working
Conf. on the Lang. Action Perspective on Comm. Modeling.
Grice, P. 1989. Studies in the Way of Words. Harvard Univ. Press.
O’Shea, K., Bandar, Z., and Crockett, K. 2010. A Conversational
Agent Framework using Semantic Analysis. Int’l Journal of
Intelligent Computing Research. Vol 1, Issue 2, June 2010.
Pang, B., and Lee, L. 2008. Opinion Mining and Sentiment
Analysis. Foundations and Trends in Information Retrieval. Vol.
2, Nos 12 (2008) 1135.
Pask, G. 1976. Conversation Theory. Elsevier Press.
Stolcke, A., Shriberg, E., Bates, R., Coccaro, N., Jurafsky, D.,
Martin, R., Meteer, M., Ries, K., Taylor, P., and EssDykema, C.
1998. Dialog Act Modeling for Conversational Speech. AAAI 98.
Twitchell, D., Adkins, M., Nunmaker, J., and Burgoon, J. 2004.
Using Speech Act Theory to Model Conversations for Automated
Classification and Retrieval. 9th Int’l Working Conf. on the Lang.
Action Perspective on Comm. Modeling.
Winograd, T., and Flores, F. 1986. Understanding Computers and
Cognition. A New Foundation for Design. Norwood, NJ. Ablex
Publishing Corp.

User Chat
Interface

Knowledge
Engine

Conversation
Engine

Chatter Bot

Elicitation Greeting Start

Dissatisfaction Satisfaction Resolution

Dissemination Conclusion

Tr
ou

bl
es

ho
ot

in
g

26

27

On the Viability of Compression for Reducing the Overheads of
Checkpoint/Restart-based Fault Tolerance

Dewan Ibtesham, Dorian Arnold, and Patrick G. Bridges
Department Of Computer Science

The University of New Mexico
Albuquerque, NM 87131

{dewan,darnold,bridges}@cs.unm.edu

Kurt B. Ferreira and Ron Brightwell
Scalable System Software Department

Sandia National Laboratories
Albuquerque, NM 87185–1319
{kbferre,rbbrigh}@sandia.gov

Abstract—The increasing size and complexity of high
performance computing (HPC) systems have lead to major
concerns over fault frequencies and the mechanisms nec-
essary to tolerate these faults. Previous studies have shown
that state-of-the-field checkpoint/restart mechanisms will
not scale sufficiently for future generation systems. There-
fore, optimizations that reduce checkpoint overheads are
necessary to keep checkpoint/restart mechanisms effec-
tive. In this work, we demonstrate that checkpoint data
compression is a feasible mechanism for reducing check-
point commit latency and storage overheads. Leveraging
a simple model for checkpoint compression viability, we
show: (1) checkpoint data compression is feasible for many
types of scientific applications expected to run on extreme
scale systems; (2) checkpoint compression viability scales
with checkpoint size; (3) user-level versus system-level
checkpoints bears little impact on checkpoint compression
viability; and (4) checkpoint compression viability scales
with application process count. Lastly, we describe the
impact checkpoint compression might have on projected
extreme scale systems.

Keywords-Fault tolerance; Checkpoint Compression;

I. INTRODUCTION

High-performance computing (HPC) systems have
been increasing dramatically in size, and this trend is
expected to continue. On the current Top 500 list [1],
300 (or 60%) of the 500 entries have greater than 8,192
cores, compared to 17 (or 3.4%) just 5 years ago. Also
on this list, four of the systems have more than 200K
cores; an additional seven have more than 128K cores,
and another 10 have more than 64K cores. This year,
the Lawrence Livermore National Laboratory schedules
to deploy its 1.6 million core system, Sequoia [2], and
future extreme scale systems are projected to have on
the order of tens to hundreds of millions of cores by
2020 [3].

Future high-end systems are also expected to increase
in complexity; for example, heterogeneous systems like
CPU/GPU-based systems are expected to become much
more prominent. We expect increased system sizes

along with this increased complexity to yield extremely
low mean times between failures (MTBF). Recent stud-
ies indeed show that system failure rates depend on the
numbers of processor chips and that system MTBF for
the biggest systems on the Top 500 lists are expected
to fall below 10 minutes in the next few years [4]

In HPC, checkpoint/restart is perhaps the most com-
monly employed fault-tolerance mechanism for appli-
cations. Yet, as we describe in Section II, increas-
ing checkpoint/restart overheads coupled with higher
failure frequencies threaten to make checkpoint/restart
infeasible for future systems. Compressing checkpoint
data is, perhaps, an obvious strategy for improving
checkpoint/restart efficiency, but compression is not
viable if its benefits do not outweigh its costs. Alas,
the majority of applications and systems that use
checkpoint/restart do not compress checkpoint data. In
this work, we demonstrate that given the current and
increasing gap between processing and data transfer
capabilities, checkpoint compression can be a very
effective strategy for improving both the time and space
efficiency of checkpoint/restart-based fault tolerance.
We use a combination of mini-applications or mini
apps [5] and a representative scientific application,
LAMMPS [6] along with the Berkeley Lab Check-
point/Restart (BLCR) framework [7] and a set of off-
the-shelf compression utilities to study the viability of
checkpoint compression. In this paper, we present the
result of this study and make the following contribu-
tions:

• We offer a viability model for checkpoint data
compression that accounts for the cost and benefits
of compression for both checkpoint commit and
recovery operations;

• We show that checkpoint data compression can be
a very effective strategy for reducing checkpoint
and restart latencies;

28

• We show what compression algorithms are best
suited for checkpoint data compression;

• We show that application scale, in terms of mem-
ory footprint size, process counts, or run time can
bear little impact on the effectiveness of checkpoint
data compression;

• We show that checkpoint data compression can
be effective for both application-level and system-
level checkpoints;

• We show that checkpoint data compression can
improve significantly an application’s makespan,
the application’s time to solution in the presence
of failures; and

• We offer a discussion of checkpoint data compres-
sion given current high performance processor and
I/O technologies and trends.

The organization of this paper is as follows: in
the next section, we give a background of the check-
point/restart mechanism and a survey of related check-
point compression work. In Section III, we present our
checkpoint compression viability model and describe
how we can use it to model both coordinated and
uncoordinated distributed checkpointing protocols. In
Section IV, we describe the applications, compression
algorithms and the checkpoint library that comprise our
evaluation framework as well as our experimental re-
sults. We conclude with a discussion of the implications
of our experimental results for future checkpoint/restart
research, development and deployment.

II. BACKGROUND AND RELATED WORK

During normal operation, checkpoint/restart (or roll-
back recovery) protocols [8], periodically record process
state to stable storage devices, devices that survive
tolerated failures. Process state comprises all the state
necessary to run a process correctly including its address
space or memory footprint and register states. When a
process fails, a new incarnation of the failed process
is recovered from the intermediate state of the failed
process’ most recent checkpoint – thereby reducing the
amount of lost computation. Checkpoint/restart is a well
studied, general fault tolerance mechanism. However,
recent studies [4], [9], [10] predict poor utilizations
(approaching 0%) for applications running on imminent
systems and the need for dedicated reliability resources.

A. Checkpoint Optimizations

Focusing on the checkpoint on the checkpoint commit
problem, saving a checkpoint to stable storage, we can
consider two sets of checkpoint optimization strategies.
The first set of strategies hide or reduce (perceived)
commit latencies without actually reducing the amount

of data to commit. These strategies include concurrent
checkpointing [11], [12], diskless or multi-level check-
pointing [13]–[15], remote checkpointing [16], [17] and
checkpointing filesystems [18]. The second set of strate-
gies reduce commit latencies by reducing checkpoint
sizes. These strategies include memory exclusion [19]
and incremental checkpointing [20]–[22]. In Section V,
we discuss the potential interplay between these opti-
mizations and checkpoint compression.

B. Related Compression Research

Li and Fuchs implemented a compiler-based check-
pointing approach, which exploited compile time infor-
mation to compress checkpoints [23]. They concluded
from their results that a compression factor of over
100% was necessary to achieve any significant ben-
efit due to high compression latencies. Plank and Li
proposed in-memory compression and showed that, for
their computational platform, compression was benefi-
cial if a compression factor greater than 19.3% could
be achieved [24]. In a related vein, Plank et al also
proposed differential compression to reduce checkpoint
sizes for incremental checkpoints [25]. Moshovos and
Kostopoulos used hardware-based compressors to im-
prove checkpoint compression ratios [26]. Finally, in a
related but different context, Lee et al study compression
for data migration in scientific applications [27].

This work focuses on the use of software-based
compressors for checkpoint compression. Given recent
advances in processor technologies, we demonstrate that
since processing speeds have increased at a faster rate
than disk and network bandwidth, data compression can
allow us to trade faster CPU workloads for slower disk
and network bandwidth.

III. A CHECKPOINT COMPRESSION VIABILITY
MODEL

Intuitively, checkpoint compression is a viable
technique for improving the performance of check-
point/restart protocols when the benefits of checkpoint
data reduction outweigh the costs of reducing the
checkpoint data. Our viability model is inspired by
the concept offered by Plank et al [24]. Plank et al
focused solely on the impact of compression for the
checkpoint commit phase. Our model addresses the cost
and benefits of compression for both checkpoint and
recovery phases. In Section IV-E, we use the results
from this model to determine the overall impact of
checkpoint compression on application performance.

We assume that individual processes of a distributed
application are checkpointed in a coordinated fashion:
all processes coordinate at the end of each checkpoint

2

29

interval to checkpoint a globally consistent application
state comprised of one checkpoint per process. This is
the commonly employed strategy in the HPC domain.
We also assume that there are an equal number of
checkpoint and recovery operations. Our justification for
this latter assumption follows: optimally, an application
takes a single checkpoint before each failure – upon
failure, only the most recent checkpoint is used, there-
fore, other checkpoints are not useful. The application
only needs to recover once per failure. Therefore, in
the optimal case, the number of checkpoints equals
the number of failures, which equals the number of
recoveries. There are various works that define optimal
checkpoint intervals [28], [29]. Finally, we assume that
checkpoint commit is synchronous; that is, the primary
application process is paused during the commit oper-
ation and is not resumed until checkpoint commit is
complete.

Checkpoint compression is viable when the time to
compress and write or commit a checkpoint and the time
to read and decompress that checkpoint is less than the
time to commit and read the uncompressed checkpoint.
Assuming the times to read and write are the same:

tcomp + 2tcc + tdecomp < 2tuc

where tcomp is compression latency, tdecomp is decom-
pression latency, tcc is the time to read or write the
compressed checkpoint and tuc is the time to read or
write the uncompressed checkpoint. This expression can
be rewritten as:

c

rcomp
+ (2× (1− α)× c

rcommit
) +

c

rdecomp
< 2× c

rcommit

where c is the size of the original checkpoint, com-
pression factor α is the percentage reduction due to data
compression, rcomp is compression speed or the rate
of data compression, rdecomp is decompression speed,
and rcommit is commit speed or the rate of checkpoint
commit or reading (including all associated overheads).
The last equation can be reduced to:

2α× rcomp × rdecomp

rcomp + rdecomp
< rcommit (1)

Equation 1 defines the minimal ratio between check-
point commit rate and compression rate, decompression
rate and compression factor in order for the overall time
savings of checkpoint compression to outweigh its costs.
Of course, checkpoint compression has the additional
benefit of saving storage space, but we do not factor
that into our model.

IV. AN EVALUATION OF CHECKPOINT
COMPRESSION

In this study, we seek to answer several fundamental
questions regarding checkpoint data compression:

• Can benefit of compressed checkpoints outweigh
the additional latencies necessary to compress and
decompress the checkpoint?

• Do the time or space scales of an application
impact checkpoint data compression?

• Does the viability of checkpoint data compression
change for application-level versus system-level
checkpoints?; and ultimately

• What real impact can checkpoint compression have
on the execution time of an application?

We now describe the applications, tools and experiments
we use to answer these questions and discuss the
conclusions we have made based on our experimental
and modeling results.

For all but our scaling experiments, we used a 64-
bit, four core Intel Xeon processor with a 2.33 GHz
clock cycle rate and 2 GB of memory. For our scaling
study, we collected checkpoints from application runs
on a Cray XT5 series machine. However, for uniformity
and ease of access to the compression utilities, these
checkpoints also were compressed/decompressed on our
four core workstation.

A. Evaluation Tool Chain

We used a range of applications, libraries and utilities
in this study. In this section, we describe these various
components.

1) The Mini Applications: We chose four mini-
applications or mini apps from the Mantevo Project [5],
namely HPCCG version 0.5, miniFE version 1.0, pH-
PCCG version 0.4 and phdMesh version 0.1. The first
three are implicit finite element mini apps and phdMesh
is an explicit finite element mini app. HPCCG is a con-
jugate gradient benchmark code for a 3D chimney do-
main that can run on an arbitrary number of processors.
This code generates a 27-point finite difference matrix
with a user-prescribed sub-block size on each processor.
miniFE mimics the finite element generation assembly
and solution for an unstructured grid problem. pHPCCG
is related to HPCCG, but has features for arbitrary scalar
and integer data types, as well as different sparse matrix
data structures. PhdMesh is a full-featured, parallel,
heterogeneous, dynamic, unstructured mesh library for
evaluating the performance of operations like dynamic
load balancing, geometric proximity search or parallel
synchronization for element-by-element operations.

3

30

Mini apps are small, self-contained programs that
embody essential performance characteristics of key
applications. While the Mantevo mini apps are not (yet)
as popular as other HPC benchmarks, like the NAS
Parallel Benchmarks or the HPC Challenge Benchmark,
we believe the mini apps are much better suited for this
study. HPC benchmarks generally target the evaluation
of computer system performance. On the other hand, the
mini apps are meant to be lightweight application prox-
ies for the heavyweight counterparts. In other words,
the mini apps are intended to mimic real application
characteristics including the memory footprint proper-
ties relevant to this checkpoint compression study.

2) A Full Application: LAAMPS: We use LAMMPS
(the Large-scale Atomic/Molecular Massively Parallel
Simulator) to evaluate checkpoint compression on a full
featured scientific application. LAMMPS [6], [30] is a
classical molecular dynamics code developed at Sandia
National Laboratories. LAMMPS is a key simulation
workload for the U.S. Department of Energy and is
representative of many other molecular dynamics code.
In addition, LAMMPS has built-in checkpointing sup-
port that allows us to compare generic, system-based
mechanisms with an application specific mechanism.
For our experiments, we used the embedded atom
method (EAM) metallic solid input script, which is used
by the Sequoia benchmark suite.

3) Compression Utilities: For this study, we focused
on the popular compression algorithms investigated in
Morse’s comparison of compression tools [31]. We
do not present results from some algorithms that did
not perform well. Additionally, some algorithms can
be parameterized to trade between execution time for
compression factor. We only present the parameter set
that represents the best trade-off.

• zip: zip is an implementation of Deflate [32], a
lossless data compression algorithm that uses the
LZ77 [33] compression algorithm and Huffman
coding. It is highly optimized in terms of both
speed and compression efficiency. The zip algo-
rithm treats all types of data as a continuous stream
of bytes. Within this stream, duplicate strings are
matched and replaced with pointers followed by
replacing symbols with new, weighted symbols
based on frequency of use.

zip takes an integer parameter that ranges from
zero to nine, where zero means fastest compression
speed and nine means best compression factor. For
our experiments, “zip(1)” represents the best
trade-off.

• 7zip [34]: 7zip is based on the Lempel-Ziv-

Markov chain algorithm (LZMA) [35]. It uses a
dictionary scheme similar to LZ77.

• bzip2: bzip2 is an implementation of the
Burrows-Wheeler transform [36], which utilizes
a technique called block-sorting to permute the
sequence of bytes to an order that is easier to com-
press. The algorithm converts frequently-recurring
character sequences into strings of identical letters
and then applies move to front transform and
Huffman coding.

In bzip2, compression performance varies with
block size. bzip2 takes an integer parameter that
ranges from zero to nine, where a smaller value
specifies a smaller block size. For our experiments,
“bzip2(1)” represents the best trade-off.

• pbzip2 [36]: pbzip2 is a parallel implementa-
tion of bzip2. pbzip2 is multi-threaded and,
therefore, can leverage multiple processing cores
to improve compression latency. The input file to
be compressed is partitioned into multiple files that
can be compressed concurrently.
pbzip2 takes two parameters. The first param-

eter is the same block size parameter as in bzip2.
The second parameter defines the file block size
into which the original input file is partitioned. For
our experiments, “pbzip2(1,5)” represents the
best trade-off.

• rzip: rzip uses a very large buffer to take advan-
tage of redundancies that span very long distances.
It finds and encodes large chunk of duplicate data
and then uses bzip2 as a backend to compress
the encoding.

Similar to zip, rzip takes an integer pa-
rameter that ranges from zero to nine, where
zero means fastest compression speed and nine
means best compression factor. For our experi-
ments, “rzip(3)” represents the best trade-off.

4) Checkpoint/Restart Utilities: The Berkeley Lab
Checkpoint/Restart library (BLCR) [7], a system-level
infrastructure for checkpoint/restart, is an open source
checkpoint/restart library and is deployed on several
HPC systems. For most of our experiments, exclud-
ing some application specific checkpoints taken with
LAMMPS, we obtained checkpoints using BLCR. Fur-
thermore, we use the OpenMPI [37] framework, which
has integrated BLCR support.

For our scaling study we used a user-level check-
point library built into LAMMPS. LAMMPS can use
application-specific mechanisms to save the minimal
state needed to restart its computation. More specifi-
cally, it saves each atom location and speed. The largest

4

31

data structure in the application, the neighbor structure
used to calculate forces, is not saved in the checkpoint
and is recalculated upon restart. This scheme reduces
per-process checkpoint files to about one eighth of the
applications memory footprint.

B. Evaluating Checkpoint Compression Effectiveness

We compressed and decompressed many checkpoints
collected from our application suite using the different
compression utilities. For each experiment, we mea-
sured the performance metrics the performance met-
rics necessary to determine checkpoint viability using
Equation 1 from Section III, namely compression factor,
compression speed and decompression speed.

For our baseline experiments, we were not concerned
about scaling along either the time our space dimen-
tions. We chose problem sizes that allowed each appli-
cation to run long enough to generate 5 checkpoints.
The three implicit finite element mini apps, HPCCG,
pHPCCG and miniFE were given a 100x100x100 prob-
lem size. phdMesh and LAMMPS were given a 5x5x5
problem size. Each application was run using 2–3
MPI processes, except for phdMesh, which was run
without MPI support. Checkpoint intervals for miniFE,
pHPCCG, HPCCG and LAMMPS were 3, 3, 5 and 60
seconds, respectively. For phdMesh the 5 checkpoints
were taken at simulation timestep boundaries. BLCR
was used to collect all checkpoints, which ranged in
size from 311 MB to 393 MB for the mini apps to
about 700 MB for LAMMPS.

Figure 1 shows how effective the various algorithms
are at compressing checkpoint data. We can see that all
the algorithms achieve a very high compression factor
of about 70% or higher for the mini apps and about 57-
65% for LAMMPS, where compression factor is com-
puted as: 1 − compressed size

uncompressed size . This means, then that the
primary distinguishing factor becomes the compression
speed, that is, how quickly the algorithms can compress
the checkpoint data.

Figures 2(a) and 2(b) show compress and decompres-
sion speeds, respectively. In general, and not surpris-
ingly, the parallel implementation of bzip2, pbzip2,
generally outperforms all the other algorithms. Decom-
pression is a much faster operation than compression,
since during the compression phase, we must search
for compression opportunities, while during decompres-
sion, we simply are using a dictionary or lookup table
to expand compressed items.

Based on the above results and Equation 1

2α× rcomp × rdecomp

rcomp + rdecomp
< rcommit,

Figure 1. Checkpoint compression factors for the various algorithms
and applications. Higher is better: a factor of 90% means that file size
was reduced by 90%.

which represents our viability model, Figure 3 demon-
strates the checkpoint read/write bandwidths that make
compression viable. For each application, the highest
bar of all the compression algorithms represents its
worse case scenario. For the worse case application,
LAMMPS, checkpoint compression is viable unless a
system can sustain a per process checkpoint read/write
bandwidth of greater than about three GB/s. In the best
case, phdMesh, the necessary per process checkpoint
read/write bandwidth raises to greater than 11 GB/s.
In Section V, we describe the impact of these results
in the context of extreme scale systems. The executive
summary is that checkpoint compression is a very viable
solution for current and projected HPC systems. (Since
pbzip2 and zip performance dominate those of the other
compression utilities, for the remainder of this paper, we
only present results for these two algorithms.)

C. Evaluating the Impact of User versus System Level
Checkpoints

Next, we examine the compression effectiveness of
system-level checkpoints versus that of application spe-
cific checkpoints. We use LAMMPS for this testing
due to its optimized, application specific checkpointing
mechanism described in the previous section. For these
tests we compare application generated restart files with
those generated by BLCR. In each case, we take 5
checkpoints equally spaced throughout the application
run.

System-level checkpointing saves a snapshot of the
application context such that it can be restarted where
it left off. Application specific checkpointing only needs
to save the data needed to resume operation. As a

5

32

(a) Compression (b) Decompression

Figure 2. Checkpoint Compression and Decompression Speeds.

result, for a fixed problem, system level checkpoints are
typically much larger in size. In our tests, LAMMPS’
application specific checkpoints were 170MB in size
compared to about 700MB BLCR generated check-
points. However, based on our results in Table I, we
observe that checkpoint compression is viable for both
application specific and system level checkpoints.

There is, however, a qualitatitve difference in the
break-even points for checkpoint compression. Our data
reveals that the major reason is that, system level
checkpoints compressed better than user level check-
points (for example, pbzip2 compression factors are

Figure 3. Checkpoint Compression Viability: Unless, checkpoint
read/write bandwidth exceeds our viability factor (y-axis), checkpoint
compression should be used.

56.5% compared to 43.3%). Additionally, the average
compression and decompression speeds were higher for
system level checkpoints than for user level checkpoints
(again for pbzip2, 94.8 MB/s compared to 87 MB/s).

pbzip(1,5) zip(1)
System Checkpoint 3.38 GB/s 2.13 GB/s
Application Checkpoint 2.79 GB/s 1.77 GB/s

Table I
COMPRESSION BREAK-EVEN POINTS FOR SYSTEM LEVEL AND

APPLICATION SPECIFIC CHECKPOINTS.

D. Evaluating the Impact of Scale

For our scaling experiments, we use the LAMMPS
and its its built-in checkpoint mechanism. We observe
how checkpoint viability scales with (1) memory size;
(2) time (between checkpoints); and (3) process counts.

In our first set of scaling experiments, we evaluate
the first two scaling dimensions, checkpoint size and
time between checkpoints. We progressively increased
the LAMMPS problem size while keeping the number
of applicaiton processes fixed at two. In this manner,
memory footprint and checkpoint sizes increases. This
also means that the application runs for a longer time,
since the per process workload has been increased. For
each LAMMPS process, five checkpoints were taken
uniformly throughout the application run. The check-
points we collected from these tests averaged about
168MB, 336MB, 470MB and 671MB for the various
problem sizes.

6

33

(a) Scaling Checkpoint Sizes and Application Runtime. (b) Scaling Process Counts.

Figure 4. Results from our Scaling Experiments.

Figure 4(a) shows the viability results from these
experiments. We readily observe that in no case did
checkpoint size show any impact on the viability of
checkpoint compression for LAMMPS.

For the study of scaling in terms of process count,
we compare the compression ratios for a weak scaling
LAMMPS EAM simulation for between 2 and 128
MPI processes. In each test, the per-process restart file
size is over 170 MB. In these runs we take 5 equally
spaced checkpoints. Figure 4(b) shows once again that
application process counts did not bear an impact on
checkpoint compression viability. We have no reason to
believe these results will be different for larger process
count runs.

E. Performance Impact of Compression

To outline the impact of checkpoint compression on
application time to solution, we created a performance
model for expected time to solution for an applica-
tion with checkpoint/restart. This model is based on
Daly’s higher order model [28], which assumes node
failures are independent and exponentially distributed.
The model takes as input the mean time between failures
(MTBF) for the system, the checkpoint commit time,
the checkpoint restart time, the number of nodes used
in the application and the time the application would
take to complete in a failure-free environment.

We modified this model to integrate checkpoint com-
pression and decompression. For the checkpoint commit
time we included the time to compress the checkpoint
image as well as the time to write this compressed image

to stable storage on the parallel system. Similarly, on
restart we included the time to read the compressed
checkpoint image and perform the decompression step.

In Figure 5, we show the result of this model. In
this figures we show the efficiency of an application
computation. This efficiency metric is defined as the
time to solution in the failure environment divided by
the time to solution in a failure-free environment. For
this figure we use the best compression ratio and rates
for each application described previously in the paper.
In addition, this model assumes each node uses 2GB
of memory and that 1

3 of that memory is written on
each checkpoint. These values are representative of what
we have observed at the Sandia National Laboratory
for our capability workloads. Finally, we assume a five
year node MTBF as has been measured in current
studies [38].

Regarding file I/O rates to stable storage, we use a
report based on a study of I/O performance on Argonne
National Laboratories 557 TFlop Blue Gene/P system
(Intrepid) [39] to select I/O rates for our model. This
work executes an I/O scaling study majoring maximum
achieved throughput for carefully selected read and
write patterns. From this report, the best observable
per process I/O bandwidths 1 MB/s for both reading
and writing. This performance scales to about 32,768
processes and then decreases. For example, at 131,072
processes, per process read bandwidth is 385 KB/s and
per process write bandwidth is 328 KB/s. At any rate,
for our study, we optimistically choose the best observed
per process I/O bandwidth of 1 MB/s.

7

34

E
ff
ic

ie
n
c
y
 (

%
)

Nodes

No compression

HPCCG compress

Lammps compress

MiniFE compress

PHDmesh compress

PHPCCG compress

 0

 20

 40

 60

 80

 100

 0 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

Figure 5. Impact of Checkpoint Compression on Application
Efficiency.

From this figure we see that each of the compres-
sion rates measured in this work have a dramatic and
positive influence on the performance of traditional
checkpoint/restart at scales seen in today’s systems as
well as the expected scales of future systems.

V. DISCUSSION

A. Compression versus Checkpoint I/O Bandwidth

The relationship between compression performance
(compression factor and compression and decompres-
sion speeds) checkpoint I/O bandwidth is the key factor
of the viability of checkpoint compression. As Fig-
ure 3 shows, for our worse case application, LAMMPS
with pbzip2 compression, compression is viable if per-
process checkpoint bandwidths are less than 3 GB/s. In
the best case, phdMesh with pbzip2 compression, per
process checkpoint bandwidths must exceed 11 GB/s.
In Section IV-E, we described the best observed per
process I/O bandwidths that we found in the literature,
1 MB/s. For comparison, the Oak Ridge Cray XT5
Jaguar petascale system has peak per-node and per-
core checkpoint bandwidths of 5.3 MB/s and 1 MB/s,
respectively, three orders of magnitude less than needed.
Similarly, the Lawrence Livermore Dawn IBM BG/P
system has a peak per-node checkpoint bandwidth of
about 2 MB/s 1 As a result, aggressive use of checkpoint
compression appears to be viable and indeed desirable
on current large-scale platforms.

The performance impact of checkpoint compression
on future systems depends highly on future computer
storage architecture developments. One report suggested
using multiple disks per processor to provide suffi-
cient storage bandwidth for high-speed checkpointing

1Oak Ridge’s Spider Lustre-based file system provides 240 GB/sec
of aggregate bandwidth [40], while Dawn’s Lustre file system is listed
as providing 70 GB/sec of peak bandwidth on LLNLL reference
pages [41].

(5 GB/sec per process) [3]. Other researchers have
suggested using similar approaches that combine non-
volatile memories with spinning storage to reduce the
potential costs of the checkpoint file systems [42],
though anticipated storage system costs are still $60M.
These aggressive bandwidths are at the boundary of
where checkpoint compression is viable, and so it is
unclear whether or not checkpoint compression would
be useful if such high-bandwidth (and expensive) I/O
systems were adopted.

Checkpoint compression also reduces the bandwidth
and storage pressures on checkpointing file systems. If
energy consumption and cost of such storage systems
are important design limiters compared to the CPU
power and costs, as is expected [3], checkpoint com-
pression could be an important technology in reducing
the demands on exascale storage systems.

B. Compression versus Other Checkpoint Optimizations

We believe that checkpoint compression is com-
pletely complementary to other known checkpoint op-
timizations such as the ones listed in Section II. La-
tency saving techniques diskless, multi-level and remote
checkpointing still require the transfer of data from
one node to another. As such, checkpoint compres-
sion can still significantly decrease the time it takes
to transfer a checkpoint. Additionally, techniques that
store checkpoints in remote DRAM memories to avoid
disk latencies benefit from reduced checkpoint sizes.
Particularly for capability class applications, which are
resource intensive and often memory-bound, checkpoint
compression would reduce storage pressures on the
memory system.

Optimization strategies that also aim at reducing
checkpoint sizes, like memory exclusion and incremen-
tal checkpointing, can benefit further from data com-
pression. For example, if applications employing these
optimizations have similar “memory footprint features”
as the applications in this study, the portions of the
application processes’ address space that still need to be
checkpointed would demonstrate the same compression
viability features as in this study.

C. Compression Viability Model Assumptions

In this study, we assumed coordinated distributed
checkpoints, In actuality, for our viability model, it does
not really matter how many processes are checkpointing
simultaneously. Our model specifies the minimum per
process (or per checkpoint) bandwidth render compres-
sion useless. This is the case whether all processes are
actively checkpointing simultaneously or some subset
thereof (including singleton sets).

8

35

We also assumed an equal number of checkpoints
and recoveries. The equations in Section III can easily
be modified to accommodate a disproportionate number
of checkpoints to recoveries. Lastly, we assumed a
synchronous checkpoint commit mechanism in which
the target process is preempted until the checkpoint has
been written to stable storage. As such, we can safely
assume that the application is interupted completely
for the entire checkpointing operation. If checkpoints
could be committed asynchronously, our model would
have to account for the reduced perceived latency and,
therefore, reduced impact of checkpoint commit on
application performance.

D. Future Enhancements

Our results show that different compression algo-
rithms exhibit different performance on different ap-
plication checkpoints. We would like to understand
what aspects and features of the checkpoint data impact
compression algorithm performance. This would help
us predict the optimal compression algorithm for a
particular application as well as give us insights into
how we might improve an algorithms performance.

The positive results from standard, off-the-shelf com-
pression utilities suggests that we might be able to
yield even better results with some customizations. As
suggested above, a detailed study what makes a good or
bad compression algorithm for checkpoint compression
could lead to optimization opportunies. Another promis-
ing avenue, which we are now exploring, is the use of
GPUs for accelerating compression speeds.

Acknowledgments

This work was supported in part by Sandia Na-
tional Laboratories subcontract 438290. Sandia National
Laboratories is a multiprogram laboratory managed
and operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin Corporation, for the
U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.
The authors are grateful to the members of the Scalable
Systems Laboratory at the University of New Mexico
and the Scalable System Software Group at the Sandia
National Laboratory for helpful feedback on portions of
this study.

REFERENCES

[1] “Top 500 Supercomputer Sites,” http://www.top500.org/
(visited March 2012). [Online]. Available: http://www.
top500.org/

[2] “ASC Sequoia,” https://asc.llnl.gov/computing
resources/sequoia (visited May 2011). [Online]. Avail-
able: https://asc.llnl.gov/computing resources/sequoia/

[3] K. Bergman et al., “ExaScale Computing Study: Tech-
nology Challenges in Achieving Exascale Systems,” De-
fense Advanced Research Projects Agency Information
Processing Techniques Office (DARPA IPTO), Tech.
Rep., September 2008.

[4] B. Schroeder and G. A. Gibson, “A large-scale study of
failures in high-performance computing systems,” in De-
pendable Systems and Networks (DSN 2006), Philadel-
phia, PA, June 2006.

[5] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M.
Willenbring, H. C. Edwards, A. Williams, M. Rajan,
E. R. Keiter, H. K. Thornquist, and R. W. Numrich,
“Improving performance via mini-applications,” Sandia
National Laboratory, Tech. Rep. SAND2009-5574, 2009.

[6] S. J. Plimpton, “Fast parallel algorithms for short-range
molecular dynamics,” Journal Computation Physics, vol.
117, pp. 1–19, 1995.

[7] P. H. Hargrove and J. C. Duell, “Berkeley lab check-
point/restart (blcr) for linux clusters,” Journal of Physics:
Conference Series, vol. 46, no. 1, 2006.

[8] E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B.
Johnson, “A survey of rollback-recovery protocols in
message-passing systems,” ACM Computing Surveys,
vol. 34, no. 3, pp. 375–408, 2002.

[9] E. N. Elnozahy and J. S. Plank, “Checkpointing for
peta-scale systems: A look into the future of practical
rollback-recovery,” IEEE Transactions on Dependable
and Secure Computing, vol. 1, no. 2, pp. 97–108, April-
June 2004.

[10] K. Ferreira, R. Riesen, P. Bridges, D. Arnold, J. Stearley,
J. H. L. III, R. Oldfield, K. Pedretti, and R. Brightwell,
“Evaluating the viability of process replication reliability
for exascale systems,” in SC, S. Lathrop, J. Costa, and
W. Kramer, Eds. ACM, Nov. 2011.

[11] D. Z. Pan and M. A. Linton, “Supporting reverse exe-
cution for parallel programs,” in 1988 ACM SIGPLAN
and SIGOPS Workshop on Parallel and Distributed
Debugging (PADD ’88). Madison, WI: ACM Press,
1988, pp. 124–129.

[12] K. Li, J. F. Naughton, and J. S. Plank, “Real-time,
concurrent checkpoint for parallel programs,” in 2nd
ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPOPP ’90). Seattle, Wash-
ington: ACM, 1990, pp. 79–88.

[13] N. H. Vaidya, “A case for two-level distributed recovery
schemes,” in ACM SIGMETRICS Joint International
Conference on Measurement and Modeling of Computer
Systems, ser. SIGMETRICS ’95/PERFORMANCE ’95.
New York, NY, USA: ACM, 1995, pp. 64–73. [Online].
Available: http://doi.acm.org/10.1145/223587.223596

[14] J. Plank, K. Li, and M. Puening, “Diskless checkpoint-
ing,” Parallel and Distributed Systems, IEEE Transac-
tions on, vol. 9, no. 10, pp. 972–986, oct 1998.

[15] A. Moody, G. Bronevetsky, K. Mohror, and B. R.
de Supinski, “Design, modeling, and evaluation
of a scalable multi-level checkpointing system,”
in ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and
Analysis (SC ’10), 2010, pp. 1–11. [Online]. Available:
http://dx.doi.org/10.1109/SC.2010.18

[16] G. Stellner, “Cocheck: Checkpointing and process mi-
gration for MPI,” in International Parallel Processing
Symposium. Honolulu, HI: IEEE Computer Society,
April 1996, pp. 526–531.

9

36

[17] V. C. Zandy, B. P. Miller, and M. Livny, “Process
hijacking,” in 8th International Symposium on High Per-
formance Distributed Computing (HPDC ’99), Redondo
Beach, CA, August 1999, pp. 177–184.

[18] J. Bent, G. Gibson, G. Grider, B. McClelland,
P. Nowoczynski, J. Nunez, M. Polte, and
M. Wingate, “Plfs: a checkpoint filesystem for parallel
applications,” in Conference on High Performance
Computing Networking, Storage and Analysis (SC
’09), 2009, pp. 21:1–21:12. [Online]. Available:
http://doi.acm.org/10.1145/1654059.1654081

[19] J. S. Plank, Y. Chen, K. Li, M. Beck, and G. Kings-
ley, “Memory exclusion: Optimizing the performance of
checkpointing systems,” Software – Practice & Experi-
ence, vol. 29, no. 2, pp. 125–142, 1999.

[20] E. N. Elnozahy, D. B. Johnson, and W. Zwaenpoel,
“The performance of consistent checkpointing,” in 11th
IEEE Symposium on Reliable Distributed Systems,
Houston, TX, 1992. [Online]. Available: citeseer.ist.psu.
edu/elnozahy92performance.html

[21] G. Bronevetsky, D. Marques, K. Pingali, S. McKee,
and R. Rugina, “Compiler-enhanced incremental
checkpointing for openmp applications,” in IEEE
International Symposium on Parallel&Distributed
Processing, 2009, pp. 1–12. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1586640.1587642

[22] J. S. Plank, M. Beck, G. Kingsley, and K. Li, “Libckpt:
Transparent checkpointing under unix,” in USENIX Win-
ter 1995 Technical Conference, New Orleans, LA, Jan-
uary 1995, pp. 213–224.

[23] C.-C. Li and W. Fuchs, “Catch-compiler-assisted tech-
niques for checkpointing,” in Fault-Tolerant Computing,
1990. FTCS-20. Digest of Papers., 20th International
Symposium, jun 1990, pp. 74–81.

[24] J. S. Plank and K. Li, “ickp: A consistent checkpointer
for multicomputers,” Parallel & Distributed Technology:
Systems & Applications, IEEE, vol. 2, no. 2, pp. 62–67,
1994.

[25] J. S. Plank, J. Xu, and R. H. B. Netzer, “Compressed
differences: An algorithm for fast incremental
checkpointing,” University of Tennessee, Tech. Rep.
CS-95-302, August 1995. [Online]. Available: http:
//web.eecs.utk.edu/∼plank/plank/papers/CS-95-302.html

[26] A. Moshovos and A. Kostopoulos, “Cost-effective, high-
performance giga-scale checkpoint/restore,” University
of Toronto, Tech. Rep., November 2004.

[27] J. Lee, M. Winslett, X. Ma, and S. Yu, “Enhancing data
migration performance via parallel data compression,”
in International Parallel and Distributed Processing
Symposium, 2002, pp. 444–451.

[28] J. T. Daly, “A higher order estimate of the optimum
checkpoint interval for restart dumps,” Future Gener.
Comput. Syst., vol. 22, no. 3, pp. 303–312, 2006.

[29] M. Bougeret, H. Casanova, M. Rabie, Y. Robert, and
F. Vivien, “Checkpointing strategies for parallel jobs,” in
SC, S. Lathrop, J. Costa, and W. Kramer, Eds. ACM,
2011, p. 33.

[30] Sandia National Laboratories. (2010, April) The
LAMMPS molecular dynamics simulator. [Online].
Available: http://lammps.sandia.gov

[31] K. G. M. Jr., “Compression tools compared,” Linux
Journal, no. 137, September 2005.

[32] P. Deutsch, “Deflate compressed data format
specification.” [Online]. Available: ftp://ftp.uu.net/pub/
archiving/zip/doc

[33] J. Ziv and A. Lempel, “A universal algorithm for se-
quential data compression,” Information Theory, IEEE
Transactions on, vol. 23, no. 3, pp. 337–343, May 1977.

[34] “7zip project official home page,” http://www.7-zip.org.

[35] I. Pavlov, “Lzma sdk (software development kit),” 2007.
[Online]. Available: http://www.7-zip.org/sdk.html

[36] J. G. Elytra, “Parallel data compression with bzip2.”

[37] E. Gabriel et al., “Open MPI: Goals, concept, and
design of a next generation MPI implementation,”
in Recent Advances in Parallel Virtual Machine and
Message Passing Interface, ser. Lecture Notes in
Computer Science, D. Kranzlmüller, P. Kacsuk, and
J. Dongarra, Eds. Springer Berlin / Heidelberg,
2004, vol. 3241, pp. 353–377, 10.1007/978-3-540-
30218-6 19. [Online]. Available: http://dx.doi.org/10.
1007/978-3-540-30218-6 19

[38] B. Schroeder and G. A. Gibson, “Understanding failures
in petascale computers,” Journal of Physics Conference
Series, vol. 78, no. 1, 2007.

[39] S. Lang, P. Carns, R. Latham, R. Ross, K. Harms,
and W. Allcock, “I/o performance challenges at
leadership scale,” in Conference on High Performance
Computing Networking, Storage and Analysis (SC
’09), 2009, pp. 40:1–40:12. [Online]. Available: http:
//doi.acm.org/10.1145/1654059.1654100

[40] G. Shipman, D. Dillow, S. Oral, and F. Wang, “The
Spider center wide file system: From concept to reality,”
in Proceedings of the 2009 Cray User Group (CUG)
Conference, Atlanta, GA, May 2009.

[41] B. Barney. (2011, August) Introduction to
livermore computing resources. [Online]. Available:
http://computing.llnl.gov/tutorials/lc resources

[42] G. Grider, “Exa-scale FSIO: Can we get there? can we
afford to?” in Proceedings of the 7th IEEE Workshop on
Storage Network Architecture and Parallel I/Os, 2011.

[43] S. Lathrop, J. Costa, and W. Kramer, Eds., Conference on
High Performance Computing Networking, Storage and
Analysis, SC 2011, Seattle, WA, USA, November 12-18,
2011. ACM, 2011, 2011.

10

37

38

Three Researchers, Five Conjectures: An Empirical Analysis of TOM-Skype
Censorship and Surveillance

Jeffrey Knockel, Jedidiah R. Crandall, and Jared Saia
University of New Mexico
Dept. of Computer Science

{jeffk, crandall, saia}@cs.unm.edu

Abstract
We present an empirical analysis of TOM-Skype censor-
ship and surveillance. TOM-Skype is an Internet tele-
phony and chat program that is a joint venture between
TOM Online (a mobile Internet company in China) and
Skype Limited. TOM-Skype contains both voice-over-
IP functionality and a chat client. The censorship and
surveillance that we studied for this paper is specific to
the chat client and is based on keywords that a user might
type into a chat session.

We were able to decrypt keyword lists used for censor-
ship and surveillance. We also tracked the lists for a pe-
riod of time and witnessed changes. Censored keywords
range from obscene references, such as �s�o (two
girls one cup, the motivation for our title), to specific pas-
sages from 2011 China Jasmine Revolution protest in-
structions, such as �ý %�ï¦S³èM (McDon-
ald’s in front of Chunxi Road in Chengdu). Surveillance
keywords are mostly related to demolitions in Beijing,
such as u�á�ÆÁ (Ling Jing Alley demolition).

Based on this data, we present five conjectures that we
believe to be formal enough to be hypotheses that the In-
ternet censorship research community could potentially
answer with more data and appropriate computational
and analytic techniques.

1 Introduction
How effective is keyword censorship at stifling the
spread of ideas? Is constant surveillance necessary for
effective Internet censorship? What are the computa-
tional, linguistic, political, and social problems faced by
both the censors and the people seeking to evade censor-
ship?

A good understanding of how Internet censorship
works, how it is applied, and what its impacts are will
require both ideas from the social sciences and computa-
tional ideas. Consider a relatively simple question such

as if keyword-based censorship is effective at stopping
protests when censorship keywords target specific adver-
tised protest locations, e.g., �'ôW·�ïïã�ª

TN (Corning West and Da Zhi Street intersection, Cen-
tury Lianhua gate). Estimating the effectiveness of this
entails an understanding of psychology to quantify the
effects of perceived surveillance and uncertainty, meme
spreading, social networking, content filtering, linguis-
tics to anticipate attempts to evade the censorship, and
many other factors.

In this paper, we propose five conjectures about cen-
sorship. Our conjectures are based on our recent re-
sults in reverse-engineering TOM-Skype censorship and
surveillance, combined with past studies of Internet cen-
sorship. TOM-Skype is an Internet telephony and chat
program that is a joint venture between TOM Online
(a mobile Internet company in China) and Skype Lim-
ited. TOM-Skype contains both voice-over-IP function-
ality and a chat client, the former of which implements
keyword-based censorship and surveillance that we have
reverse-engineered.

We present these conjectures in a formal way, in an at-
tempt to propose them as testable hypotheses on which
future research can focus. We do not expect all of our
conjectures to be true. However, all of them have the
properties that: 1) they can in principle be empirically
tested; and 2) determining whether they are true or false
will advance our understanding of Internet censorship.
We contend that the enumeration of such testable con-
jectures is critical in order for the study of Internet cen-
sorship to continue as a viable area of scientific research.

1.1 TOM-Skype results
In this paper, we give preliminary results from reverse-
engineering different versions of TOM-Skype. Our re-
sults include the cryptography algorithms used for both
censorship and surveillance, differences between TOM-
Skype versions, fully decrypted lists of keywords with
translations, changes to the lists over time, and a rough

1 39

categorization of three of the lists.
Recently, Nart Villeneuve demonstrated that the chat

functionality of TOM-Skype triggers on certain key-
words, preventing their communication and uploading
messages to a server in China [16]. He provided some
high-level analysis of what is censored and how this
mechanism works. In this paper, we provide a more de-
tailed analysis of TOM-Skype, including the algorithms
for protecting the keywords that trigger censorship and
surveillance. All versions of TOM-Skype have at least
one of two separate lists: one that triggers both censor-
ship and surveillance and one that only triggers surveil-
lance. We have decrypted all lists for all versions of
TOM-Skype that we analyzed, and we have translated
the most recent version’s lists and tracked changes in the
lists. The encryption for protecting the keyword lists
in earlier versions is based on a simple algorithm in-
volving additions and exclusive-or operations on each
byte, whereas the encryption for later versions is AES-
based. The encryption for uploading conversations that
trigger surveillance is DES-based. By overcoming the
anti-debugging functionalities built into both Skype and
TOM-Skype, we also have a detailed understanding of
how the censorship and surveillance is implemented.
Based on our analysis, we propose a set of five conjec-
tures.

1.2 Related work
The Open Net Initiative is an excellent source of infor-
mation about censorship in a variety of countries [6].
However, the descriptions of what is filtered are rel-
atively high-level. The report by Zittrain and Edel-
man [17] is a good overview of some of China’s cen-
sorship implementations.

The methods of China’s HTTP keyword filtering were
first published by the Global Internet Freedom Consor-
tium [10]. Clayton et al. [3] published a more de-
tailed study of this mechanism. The ConceptDoppler
project [4] studied multiple routes and also used Latent
Semantic Analysis [12] to reverse-engineer 122 black-
listed keywords by clustering around sensitive concepts
and then probing. ConceptDoppler has generated two
more recent lists as well.

Human Rights Watch [11], Reporters Without Bor-
ders [14], and others [13, 1] have released reports de-
scribing China’s censorship regime. These reports often
include insider information about what is censored [14]
or perhaps full leaked blacklists, such as the list of key-
words blocked in the QQChat chat program [11, Ap-
pendix I] or by a particular blog site [11, Appendix II]. In
the case of the QQChat list, hackers found the list in the
QQ software by doing a simple string dump of QQChat’s
dynamically linked libraries, i.e., there was no encryp-
tion.

There are several factors that make the list we have
obtained from TOM-Skype unique among the lists that
have been made public thus far. The first is that, not only
is the TOM-Skype list more up-to-date, but in the three
weeks that we have been monitoring it we have recorded
many updates to it. We plan to record daily updates for
a long period of time. Also, we believe our list is the
first to provide more than anecdotal evidence of some
of the shorter-term applications of censorship, such as
the censorship of specific intersections where protesters
planned to meet or events in the news. Our list is not
only complete, but there is a clear separation between
censorship keywords and surveillance keywords.

The prior work that is closest to ours is the aforemen-
tioned study of TOM-Skype by Villeneuve [16]. That
analysis was based on obtaining the uploaded conversa-
tions, which were available for download on the server
that TOM-Skype uploaded them to at the time, and per-
forming clustering and other aggregate analyses of this
data. In contrast, the analysis we present in this paper
is based on reverse-engineering of the TOM-Skype im-
plementation of censorship and of the cryptography for
protecting the keyword blacklist. Thus, we are able to
present exactly what the keywords are and make a clear
distinction between keywords that evoke censorship and
surveillance and those that only evoke surveillance.

There has been some amount of historical, political,
economic, and legal discussion of the potential effective-
ness and applications of Internet censorship in China and
elsewhere [1, 13, 7, 2, 5]. Our goal in this paper is to
present data that can help the research community move
toward formalizing conjectures about Internet censorship
that can be tested computationally. We propose five such
conjectures after presenting our data.

This paper is structured as follows. In Section 2
we present our findings from reverse-engineering TOM-
Skype. Section 3 discusses the two keyword blacklists
for the most recent version of TOM-Skype, which we
have translated and analyzed in detail. Then we propose
five conjectures and some recommendations for future
work in Section 4.

2 Empirical analysis of TOM-Skype
In this section we describe the basic empirical results
from our efforts to reverse-engineer TOM-Skype.

2.1 Censorship mechanisms
Each version of TOM-Skype that we analyzed features
shared censorship mechanisms. Each binary contains a
built-in, encrypted list of keywords to censor, and, via
HTTP, each client downloads at least one additional en-
crypted list of censored keywords called a “keyfile” from
TOM’s servers. Each client uses at least one of these lists
to censor incoming and/or outgoing chat messages at any

2 40

time.
However, we also found stark differences in their cen-

sorship implementations. Different versions use different
encryption algorithms, different built-in keyword lists,
and download keyfiles from different locations. More-
over, implementations vary in whether they censor in-
coming and/or outgoing chat messages.

2.1.1 TOM-Skype 3.6 and 3.8

We first analyzed TOM-Skype 3.6.4.316 and 3.8.4.44.
We found that these clients censor both incoming and
outgoing chat messages by failing to render them in one’s
chat window and by failing to record them in one’s chat
history. Censored outgoing messages are additionally
never sent.

When the client starts up, words are initially censored
according to the keyword list built into the binary. After
a keyfile is downloaded from TOM’s servers, the down-
loaded keyfile substitutes the built-in keyword list. By
using a packet sniffer, we found that these clients down-
load keyfiles from the following URL:

skypetools.tom.com/agent/newkeyfile/keyfile

To decrypt this file, we redirected
skypetools.tom.com DNS queries to our own
HTTP server, allowing us to force TOM-Skype to load
keyfiles of our choosing. Then, through binary search,
we were able to locate the ciphertext entry for the
keyword “fuck” in the keyfile, which is the keyword that
Villeneuve [16] used. We started with a known-plaintext
analysis of this keyword. We then employed a chosen
ciphertext attack by adding initially single-character
words to the list to see which words were filtered by
TOM-Skype. As we recognized patterns and became
more familiar with the decryption algorithm, we were
soon able to censor entire words. The decryption
algorithm that we discovered follows:

Algorithm 1 Decrypting TOM-Skype 3.6 keyfiles
1: procedure DECRYPT(C0::n; P1::n)
2: for i 1; n do
3: Pi = (Ci � 0x68)� Ci�1 (mod 0xff)
4: end for
5: end procedure

The ciphertext always has one more byte than the
plaintext, since the ciphertext’s first byte serves as an
initialization vector. We found that this algorithm also
decrypts the keyword lists built into the binaries.

2.1.2 TOM-Skype 4.0 and 4.2

Next we analyzed TOM-Skype 4.0.4.226 and 4.2.4.104.
These versions implemented censorship similarly as our
tested 3.6 and 3.8 versions, except they download a key-
file from the following URL:

an.skype.tom.com/installer/agent/keyfile

where n is a pseudorandom, uniformly-distributed inte-
ger between 1 and 8, inclusive. This file can be decrypted
using the previous algorithm, as can these clients’ built-
in keyword lists.

2.1.3 TOM-Skype 5.0 and 5.1

Finally, we analyzed TOM-Skype 5.0.4.14 and 5.1.4.10.
These versions delegate censorship to a separate out-
of-process binary ContentFilter.exe. We found
these versions to only perform censorship on incoming
messages.

We found that ContentFilter.exe downloads
keyfiles from the following URL:

skypetools.tom.com/agent/keyfile

which, as before, substitutes the list built into
ContentFilter.exe’s binary. Moreover,
we found that only TOM-Skype 5.1.4.10’s
ContentFilter.exe additionally downloads a
keyfile from the following URL:

skypetools.tom.com/agent/keyfile_u

The words in the latter keyfile are not used for censorship
but only for surveillance, detailed in the next section.

We found that both of these keyfiles and the keyword
lists built into ContentFilter.exe are encrypted
with a 256-bit AES key in ECB mode. This UTF-16LE-
encoded key is originally known to have been used to
encrypt the downloaded keyfile in TOM-Skype 2.5 [9]:

CENSOR_KEY5.0 = "0sr TM#RWFD,a43 "

In UTF-16LE encoding, this key is 256 bits, although
half of the bytes are null.

2.2 Surveillance mechanisms
We found all versions of TOM-Skype analyzed in the
previous section to perform surveillance except 5.0.4.14.
Each of the other versions, whenever it performs censor-
ship, reports back encrypted text in a query string to the
following URL:

an.skype.tom.com/installer/tomad/ContentFilterMsg.
php

where again n is a pseudorandom, uniformly-distributed
integer between 1 and 8, inclusive.

As reported in the previous section, TOM-Skype
5.1.4.10 has an additional downloaded keyfile contain-
ing words only used for surveillance of but not the cen-
sorship of incoming messages.

By reverse engineering TOM-Skype 3.8.4.44’s
Skype.exe and TOM-Skype 5.1.4.10’s
ContentFilter.exe binaries, we discovered

3 41

two DES keys used to encrypt surveillance text,
where which is used depends on the version. Being
outside of the main Skype binary, we first targeted
ContentFilter.exe, as Skype.exe is known
to contain anti-debugging measures that cause the
program to crash when attached with a debugger [8].
In ContentFilter.exe, we discovered that before
surveillance text is encrypted, each sequence of six bytes
of the text is used as the first six bytes of each eight-byte
DES block to be encrypted. The remaining two bytes
are pseudorandom, uniformly-distributed between 0x27
and 0x73, inclusive. DES encryption is performed on
all blocks in ECB mode using the following 64-bit key
ASCII-encoded:

SURVEIL_KEY4.0 = "X7sRUjL\0"

which we also found to be used by TOM-Skype
4.0.4.226 and 4.2.4.106. Note that the 8th byte of
SURVEIL_KEY4.0 is a null byte. Although we express
this null byte for clarity, in TOM-Skype’s implementa-
tion, this byte is the null-terminating byte of the string.
This string, ASCII-encoded, also appears as a literal in
the binary.

To discover the other DES key and circumvent
the anti-debugging measures in TOM-Skype 3.8.4.44’s
Skype.exe executable, we used DLL injection, a
technique where we cause TOM-Skype’s calls to li-
brary functions to instead call code that we have writ-
ten. We previously observed that, when stuffing each
eight-byte DES block with the two random bytes,
ContentFilter.exe reseeds the random number
generator with a hardware time that it retrieves via a li-
brary call. We similarly found and then exploited this
behavior in Skype.exe by causing each of these li-
brary calls for the time to call our code and sleep for
ten seconds, allowing us to attach with a debugger while
TOM-Skype slept. After attaching, we suspended all
other threads not sleeping in our code. Then we ob-
served the encryption process in the debugger before
TOM-Skype’s anti-debugging measures activated. We
found the eight bytes of the DES key embedded in in-
structions in eight cases of a compiled switch statement.
When ASCII-encoded, the following 64-bit DES key is
used in ECB mode to encrypt surveillance text in TOM-
Skype 3.6.4.316 and 3.8.4.44:

SURVEIL_KEY3.6 = "32bnx23l"

After decrypting the surveillance text, we found that
less information was reported in Skype 5.1.4.10 versus
older versions. Here is example surveillance plaintext for
a censored outgoing message for tested versions before
5.x:

jdoe falungong 4/24/2011 2:25:53 AM 0

Remaining Removed

Figure 1: Distribution of keywords on the keyword list
that evokes both censorship and surveillance.

Here “jdoe” is the sender of the outgoing message,
“falungong” is the offending message in its entirety, fol-
lowed by the date, time, and a “0” to indicate that the cen-
sored message was outgoing. When an incoming mes-
sage is censored, then that message’s sender is reported
instead and the trailing “0” becomes a “1.”

In contrast to versions before 5.x, here is example
surveillance for version 5.1.4.10:

falungong 4/24/2011 2:29:57 AM 1

No username appears to be reported. Since all
surveillance-related text in version 5.1.4.10 is incoming,
a “1” will always trail the message.

3 Keyword analysis
We found that the built-in keyword lists in Tom-Skype
3.6.4.316, 3.8.4.44, 4.0.4.226, and 4.2.4.104 were iden-
tical and contained 108 censored words in either English
or Chinese. Moreover, although they retrieve keyfiles
from different URL’s, as of 4/29/2011, each retrieved
keyfile was identical and contained 442 words in either
English or Chinese. These keyfiles have not been modi-
fied since 4/22/2011, and, if we believe their HTTP last-
modified headers, they were last modified on 3/11/2011.

Since we began downloading Tom-Skype 5.0.4.14 and
5.1.4.10 keyfiles on 4/22/2011, we have noticed substan-
tial changes to both the censorship keyfile and the 5.1-
specific surveillance-only keyfile. We do not know the
reason for the changes, but one possible reason is the
human rights talks between China and the United States
that were scheduled for 4/27/2011 and 4/28/2011 [15].
We focus on these lists and their changes in this section.

4 42

Before 4/22/2011, the keyword list that evokes both
censorship and surviellance contained Prurient inter-
ests, e.g., $s�o (Two girls one cup), �7�l (Two
men one horse), and ÍÂ (Fuck rotten); Political terms,
e.g., mÛ (Liu Si, in reference to the Tiananmen Square
protests that occurred on June 4th, 1989—this is literally
the numbers “64”), F� (Lu Si, a homophonic way of
writing mÛ), and ³ù>� (River Crab Society, a cor-
ruption of “��>�”, which means “harmonious soci-
ety”); Religious terms, e.g., Õn (Falun) and ÂóÕè

(Quan Yin Method, a Buddhist meditation method); Lo-
cations of planned events such as protests, e.g., �Þ)

³S²-Ãcè (The main entrance of the Guangzhou
Tianhe Sports Center in Guangzhou) and mÞ Vèï

ï¦R�MóóP·ÉÁ�& (Hyatt Regency Hubin
Road, next to the area in front of the musical fountain in
Hangzhou); News/information sources, e.g., ôú~Ñ

(Wikipedia) and ÿ'�lø (Canadian Broadcast-
ing Corporation); Political dissidents, e.g., �Sâ (Liu
Xiaobo) and >��� (Wu’er Kaixi, a student leader
from the Tiananmen Square protests of 1989); Govern-
ment officials, e.g., �ö� (Liu Yandong, she is the
highest ranking female in the communist party and a
member of the politburo—she is caught up in a scandal
involving her son-in-law) and q�) (Oscar best actor
winner, a nickname for Wen Jiabao after he appeared to
cry insincerely on television); Information about spy-
ing, e.g., K:�,oöM9�} (Phone tapping soft-
ware free download) and)n (Three gain universal,
part of a product name at sunlips.com,)n :H

�ãa®, that appears to be a remote microphone for
spying), and other Miscellaneous keywords. The con-
tents of the original keyword list (before 4/22/2011) is
shown in Figure 1. Figure 1 also shows the distribution
of the words that were taken away (right) and that re-
mained (left) on 4/22/2011.

Figure 2 shows the distribution of the 158 words for

Figure 2: Distribution of keywords on the keyword list
that evokes only surveillance.

the list that evokes only surveillance. Most of this list
is specific demolition sites or other references to the de-
molitions in Beijing, where people have reportedly been
forced from their homes and their houses demolished to
make room for future construction. The only words on
this list that are not related to these demolitions are five
keywords related to the Shouwang church, a Christian
church in Beijing that illegally holds congregations out-
doors in public places, and two references that appear
to be names of companies or parts of a company name:
�KýE (Westinghouse International) and 'R (Da-
heng).

Another interesting aspect of the Skype lists we an-
alyzed, specifically the one that evokes both censorship
and surveillance, is that there are many phrases that ap-
pear to be exact phrases taken from online instructions
for protesters or calls for sit-ins. For example, one doc-
ument suggests that protesters should take symbolic ac-
tions that are ambiguous so that they will not be arrested
by the police, e.g., ÿ@¦KÎh:ê1 (Hold a mi-
crophone to indicate liberty—a passage where the doc-
ument suggests that if people want to signify that they
need liberty, they should put a picture of a microphone
on their clothes or bag and gesture as if speaking into a
microphone when they speak). Another document calls
for a sit-in in response to the demolitions in Beijing, and
another instructs people on how to make an origami jas-
mine flower and pleads protesters to not get arrested be-
cause this is an early phase of the protests.

4 Conjectures
In this section we present five conjectures that are based
on the data we presented in this paper as well as previ-
ously available data on Internet censorship. Our aim is
for these conjectures to be testable hypotheses so that the
research community can confirm or refute them given the
right data and appropriate computational and analytical
techniques. All of the following conjectures are limited
to content and traffic within a country where the censor-
ing occurs. It is unlikely that all of these conjectures are
true. However, we believe that each of these conjectures
have the properties that: 1) they can in principle be em-
pirically tested; 2) determining whether they are true or
false will advance our understanding of Internet censor-
ship. The five conjectures are:

1. Effectiveness Conjecture: “Censorship is effec-
tive, despite attempts to evade it.” More formally,
censoring a keyword reduces the number of ac-
cesses to content that either contains that keyword
or contains related keywords. This may simply be
because the quality-of-service for accessing content
that is the target of censorship goes down whenever
viewers or publishers must change their behavior in

5 43

Figure 3: Google Trends data for the Chinese-language searches for the “2 girls 1 cup” meme. The higher-
volume data line is for $$$sss���ooo and the lower-volume data line is for ���sss���ooo.

Figure 4: Google Trends data for the English-language searches for the “2 girls 1 cup” meme.

some specific way to access or disseminate the con-
tent.
The motivation for including this conjecture is
that the censorship keywords we found in TOM-
Skype that were phrases from specific documents
were from documents that are not prevalent on
the Web. These documents were presumably im-
portant enough that they were targeted by censor-
ship, but there are very few instances of these doc-
uments online which suggests that they were not
as widely disseminated as the authors of the doc-
uments had intended. For example, ÿ@¦K

Îh:ê1 (Hold a microphone to indicate lib-
erty) is a phrase from instructions for Jasmine rev-
olution protests in China in 2011. As of July
2011, searching for this exact phrase in quotation
marks in the United States version of Google at
www.google.com, which is known not to exclude
results in response to China’s Internet censorship,
returns only nine results. The document appears in
other places in addition to these nine results online,
but with blacklisted phrases divided with dashes or
paraphrased.

2. Spread Skew Conjecture: “Censored memes
spread differently than uncensored memes.” More
formally, censoring a keyword qualitatively changes
the time vs. number of accesses plot of the keyword.
In particular, the distribution is not simply scaled
downwards by a fixed amount, but may also be more
or less spread out over time and have a different dis-
tribution.

Because most of the censored keywords in our data
do not show significant traffic volume in Google
Trends, we cannot support this conjecture with our
data. However, the conjecture was inspired by the
Internet meme “2 girls 1 cup”, which in Chinese
is targeted by four keywords in our data ($s�

o, �s�o, és�o, and $s��o, only
the first two of which have enough search volume
to appear in Google Trends results). Figures 3
and 4 show the Google Trends results for Chinese
and English for this meme, respectively. While the
search volume of the Chinese-language versions of
the meme is too small to make direct comparisons
or extrapolate too much information about the dis-
tribution of the meme, the fact that the Chinese-
language version of the meme has a lower peak and
a taller tail is what inspired the spread skew con-
jecture. For each distribution, if we consider the
150 weeks after we first have data for that distribu-
tion, the English distribution has skewness 2:9511
but the Chinese distribution has skewness 2:0506.
This may be a result of censorship effectively re-
moving a portion of the right tail of the distribution
over time. Note that Google Trends data is normal-
ized in these graphs and that the English version of
the meme has 32.0 times the total traffic volume as
the most popular Chinese version.

3. Interactions of Secrecy and Surveillance Conjec-
ture: “Keyword based censorship is more effective
when the censored keywords are unknown and on-
line activity is, or is believed to be, under constant

6 44

surveillance.” More formally, for a given word that
is perceived to be sensitive, accesses to the content
related to that word will be fewer if it is unknown
whether the word is censored or not. Further, ac-
cesses to related content will be fewer if Internet
users believe that their online activities are being
recorded and monitored.
This conjecture is inspired by the fact that the en-
tity censoring Tom-Skype has made efforts to keep
the list of censored and surveilled keywords and the
surveillance traffic private.

4. Peer-to-peer vs. Client-Server Conjecture: “The
types of keywords censored in peer-to-peer commu-
nications are fundamentally different than the types
of keywords censored in client-server communica-
tions.”
For example, the censored keyword list for TOM-
Skype, a peer-to-peer application, contains a higher
fraction of proper nouns than censored keyword
lists for client-server applications (see [4, 11] in ad-
dition to our list for examples of both types of lists).
In particular, we noticed a high number of names
of people and places on the censorship blacklist for
TOM-Skype.

5. Neologism Conjecture: “Neologisms are an ef-
fective technique in evading keyword based cen-
sorship, but censors frequently learn of their ex-
istence.” More formally, if a neologism is used
in place of a censored keyword, the content will
spread relatively freely until the neologism itself
is censored. Phenomena such as “reblogging” and
“retweeting” are impacted by this.
We included this conjecture because of the large
number of neologisms present in our data. Exam-
ples include F� (Lu Si, which sounds like m

Û, or 64, in reference to the June 4th Tienanmen
Square incident) and q�) (Oscar best actor win-
ner, a nickname for Wen Jiabao). Note that some
keywords have a large number of possible neolo-
gisms, so that this conjecture may not be true for a
large number of keywords. For example, we have
seen instances in online Web forums of mÛ, or 64,
being referred to as “32 + 32” or “8 squared”. Un-
certainty about what keywords are being blacklisted
and the possibility of surveillance are also factors in
the effectiveness of neologisms, however.

5 Conclusion
In conclusion, we have presented new data about Inter-
net censorship in China based on our efforts to reverse-
engineer TOM-Skype and proposed five conjectures
based on this data. For future work, our hope is that the
research community will test these and other conjectures
with more data and appropriate computational and ana-

lytic techniques.

Note: Complete lists with translations of the censorship
and surveillance keywords for TOM-Skype are available
at http://cs.unm.edu/~jeffk/tom-skype/.

Acknowledgments

We would like to thank the anonymous FOCI review-
ers for their insightful comments. We would also like
to thank the many people who helped us improve our
translations and gave feedback on other aspects of the
paper. This material is based upon work supported by
the National Science Foundation under Grant Nos. CCR
#0313160, CAREER #0644058, CAREER #0844880,
and TC-M #090517.

References
[1] CHASE, M. S., AND MULVENON, J. C. You’ve

Got Dissent! Chinese Dissident Use of the Internet
and Beijing’s Counter-Strategies. RAND Corpora-
tion, 2002.

[2] CLAYTON, R. Failures in a hybrid content block-
ing system. In Privacy Enhancing Technologies
(2005), pp. 78–92.

[3] CLAYTON, R., MURDOCH, S. J., AND WATSON,
R. N. M. Ignoring the great firewall of china. I/S:
A Journal of Law and Policy for the Information
Society 3, 2 (2007), 70–77.

[4] CRANDALL, J. R., ZINN, D., BYRD, M., BARR,
E., AND EAST, R. ConceptDoppler: a weather
tracker for Internet censorship. In Proc. of 14th
ACM Conference on Computer and Communica-
tions Security (CCS) (2007).

[5] DANEZIS, G., AND ANDERSON, R. The eco-
nomics of resisting censorship. IEEE Security and
Privacy 3, 1 (2005), 45–50.

[6] DEIBERT, R. J., PALFREY, J. G., ROHOZINSKI,
R., AND ZITTRAIN, J. Access denied: The prac-
tice and policy of global internet filtering. The MIT
Press (2007).

[7] DORNSEIF, M. Government mandated block-
ing of foreign web content. In Security, E-
Learning, E-Services: Proceedings of the 17. DFN-
Arbeitstagung über Kommunikationsnetze (2003),
J. von Knop, W. Haverkamp, and E. Jessen, Eds.,
Lecture Notes in Informatics, pp. 617–648.

7 45

[8] FABRICE, D., AND KORTCHINSKY, K. Vanilla
skype part 1. Available at http://recon.cx/en/f/
vskype-part1.pdf.

[9] FABRICE, D., AND KORTCHINSKY, K. Vanilla
skype part 2. Available at http://recon.cx/en/f/
vskype-part2.pdf.

[10] The Great Firewall Revealed. Whitepaper released
by the Global Internet Freedom Consortium in De-
cember of 2002.

[11] “Race to the Bottom”: Corporate Complicity in
Chinese Internet Censorship. In Human Rights
Watch (August 2006). http://www.hrw.org/reports/
2006/china0806.

[12] LANDAUER, T. K., FOLTZ, P. W., AND LAHAM,
D. Introduction to latent semantic analysis. Dis-
course Processes 25 (1998), 259–284.

[13] LIANG, C. Red light, green light: has China
achieved its goals through the 2000 Internet regu-
lations? Vanderbilt Journal of Transnational Law
345 (2001).

[14] MR. TAO. China: Journey to the heart of In-
ternet censorship. Investigative report sponsored
by Reporters Without Borders and Chinese Human
Rights Defenders, Oct 2007.

[15] PERALTA, E. China, United States to
Begin Human Rights Talks. Blog post
26 April 2011, URL: http://www.npr.org/
blogs/thetwo-way/2011/04/26/135745130/
china-united-states-to-begin-human-rights-talks,
accessed 8 May 2011.

[16] VILLENEUVE, N. Breaching trust: An analysis
of surveillance and security practices on China’s
TOM-Skype platform. Available at http://www.
infowar-monitor.net/breachingtrust/.

[17] ZITTRAIN, J., AND EDELMAN, B. Internet filter-
ing in China. IEEE Internet Computing 7, 2 (2003),
70–77.

8 46

47

Formica ex Machina : Ant Swarm Foraging
From Physical to Virtual and Back Again

Joshua P. Hecker, Kenneth Letendre, Karl Stolleis, Daniel Washington, and
Melanie E. Moses

University of New Mexico,
Albuquerque, NM 87111

{jhecker,mmoses}@cs.unm.edu
{kletendr}@unm.edu
http://cs.unm.edu/

Abstract. Ants use individual memory and pheromone communication
to achieve effective collective foraging. We implement these strategies as
distributed search algorithms in robotic swarms. Swarms of simple robots
are robust, scalable and capable of exploring for resources in unmapped
environments. We test the ability of individual robots and teams of three
robots to collect tags distributed at random and in clustered distribu-
tions. Teams of three robots that forage based on individual memory
without communication collect RFID tags from all three distributions
approximately twice as fast as a single robot using the same strategy.
Adding pheromone-like communication in the teams of three robots im-
proves foraging success. Our simulation system mimics the foraging be-
haviors of the robots and replicates our results, with slight improvements
in the three robot teams. Simulated swarms of 30 and 100 robots collect
tags 8 and 22 times faster than teams of three robots. This work demon-
strates the feasibility of programming large robotic swarms for collective
tasks such as retrieval of dispersed resources, mapping and environmen-
tal monitoring. It also lays a foundation for evolving collective search
algorithms in silico and then implementing those algorithms in machina
in robust and scalable robotic swarms.

Keywords: swarm intelligence, robots, agent-based models, social in-
sect foraging, genetic algorithms

1 Introduction

One goal of swarm robotics is to engineer groups of simple, low-cost robots that
can cooperate as a cohesive unit to accomplish collection and exploration tasks
such as mapping, monitoring, search and rescue, and foraging for resources in
unmapped environments [4, 5, 8]. Ideally, robotic swarms are capable of exploring
unknown environments without the benefit of prior knowledge to guide them.
Individuals must adapt to sensor error and motor drift, and the swarm must
function given variation, errors and failures in individual robots.

Biology often provides inspiration for approaches to achieve these design goals
[4, 8, 21]. Biologically-inspired decentralized approaches in particular have en-
hanced scalability and robustness by removing single points of failure from com-
munication bottlenecks and rigid control structures. Thus far such approaches
have not yet reached the level of emergent coordination observed in natural
systems [28].

48

2 J. Hecker et al.

Our contribution is inspired by colonies of seed harvester ants who forage for
seeds in a desert environment using a combination of individual memory and
information sharing through pheromone trails. Our robots are equipped with
a sensor suite which mimics the real ants: time-based odometry approximates
physical location analogous to the ants’ stride integration [33], and ultrasound
ranging measures distance to objects and corrects for drift similar to an ant’s
landmark-based navigation [16]. Like ants, the robots use individual memory
and communication of previously successful search locations to improve search
performance. Our robots search for radio-frequency identification (RFID) tags,
and upon finding them, return to a central nest.

The search algorithm utilized by individual members of the swarm is derived
from our previous work that used an agent-based model (ABM) guided by genetic
algorithms (GA) to replicate foraging behaviors of seed harvester ants [11, 18].
We duplicate parameters from the ant model in the robots. For example the
robots movement during uninformed search replicates the correlated random
walk of virtual ants that was evolved by the GA to produce colonies that find
seeds quickly. We modified the ABM to replicate the constraints of the robot
hardware, and to model the behavior and environment of the robots in their
search for RFID tags. This parallel physical and virtual implementation allows
us to compare results from identical experiments in machina as implemented in
physical robots and in silico in the ABM (as in [7, 19]. We conduct additional
experiments with the ABM in which we scale up the size of the swarm, the
number of tags, and the size of the area in which the virtual robots search.
Because we see similar foraging success in simulated and robotic swarms with
1 and 3 individuals, these trials suggest future capabilities of swarms of 30 and
100 robots.

2 Background

2.1 Swarm Robotics

Swarm robotics is necessitated by problems that are inherently too complex or
difficult for a single robot, and by the need to develop systems that are cheaper,
more adaptive, and robust to failures, errors and dynamic environments [5, 8].
Like ant colonies and other complex biological systems, robotic swarms have
potential to utilize efficient, robust, distributed approaches to physical tasks.
Effective algorithms for swarm robotics must extend beyond simulation to in-
telligently deal with the complexities of navigating in real environments [19, 20,
7]: sensors are imperfect and may fail, collisions with obstacles (including other
robots) are common, and real environments are dynamic, changing in response to
external factors and the activities of the robots themselves. Further, approaches
must balance the benefit of centralized information exchange with the scalability
of decentralized approaches [24, 2, 27]. Even highly decentralized robot interac-
tions show diminishing returns in which interference between robots can make
swarm efficiency decrease as the swarm size grows [17].

Recent work has demonstrated the feasibility of swarms in which collectively
intelligent behaviors emerge from distributed interactions among robots. Simul-
taneous localization and mapping (SLAM) enables robots to infer knowledge
about unknown environments [10, 1, 22]. Localization space-trails (LOST) facil-
itate a shared world view between robots without a global coordinate system
through the use of local landmarks and waypoints [32].

49

Formica ex Machina 3

Simple low-cost platforms have been designed specifically to form robot
swarms, e.g., [21, 7, 6, 30], but a great challenge exists in transforming a set of
simple mobile components into a functional swarm. Robotic swarms have not
yet approached the emergent intelligence of biological swarms [28], but a promis-
ing approach is to use evolutionary algorithms to determine the parameters of
individual behavior that result in effective collective action [26, 9, 31, 12].

2.2 Biological Ants

Our algorithms are largely inspired by foraging in desert seed-harvester ants
of the genus Pogonomyrmex [13]. These foragers typically leave their colony’s
single nest, travel in a relatively straight line to some location on their territory,
and then switch to a searching behavior. The forager searches by moving in
a correlated random walk, where the probability of turning is dependent on
whether the forager expects to find seeds in the area (informed by pheromone
trails or previous foraging success) or not. An informed ant has an initially high
tendency to turn, keeping the ant in a small area. Over time, if a seed is not
found, degree of turning decreases, which straightens out the search path, and
the ant tends to wander farther from its initial search location [12].

An ant with no prior expectations of finding seeds will use a smaller degree
of turning and therefore explore a relatively larger area. When a forager finds a
seed, it brings it directly back to the nest. Foragers often return to the location
where they previously found a seed, in a process called site fidelity[23, 3, 13].
Seeds are hard to find, so the duration of a foraging trip, which includes travel
time and search time, is dominated by the time spent searching for a seed [23,
3]. Effective search strategies for foragers will minimize the time spent searching
for seeds (which minimizes the risk of foraging in the hot, dry desert) while
maximizing the number of seeds collected. It is unclear exactly how often these
ants lay and follow pheromone trails [16, 15, 25], but our recent work indicates
laying and following pheromone trails to dense piles of food may be an effective
component of these ants’ foraging strategies [18, 12].

2.3 Agent-based Model

We have used Genetic Algorithms (GAs) to find the optimal balance of site
fidelity and pheromone communication in simulated ant colonies [18]. We sim-
ulated ant foraging using a set of agent-based models (ABMs) of foragers on a
grid, with parameters optimized by a GA to specify how ants travel from the
nest, search, and use site fidelity and pheromone communication. GAs are an
optimization technique that simulates the process of evolution by natural se-
lection [14], just as biological ants undergo evolutionary pressure to maximize
foraging success (among other goals and constraints). Therefore GAs were an
appealing method for selecting parameters for our ant foraging model [29, 26].
The foraging success of virtual ants evolved by the GA is shown in Figure 1.

The ant foraging ABM was modified to model our swarm robots and our
experimental setup. The simulation provides both a theoretical benchmark and
a basic architecture for using GAs to optimize real world parameters. All in
machina experiments have been duplicated in silico, and results are presented
side by side to allow comparison.

50

4 J. Hecker et al.

Fig. 1: Bars represent number of seeds
collected during simulated foragin tri-
als by colonies of 100 foragers. Colonies
forage on clustered, random, and power
law distributed, after optimization by
GA to mazimize food collection rate on
those distributions. Simulations using
site fidelity, pheromone recruitment,
both methods together, or neither (no
information use) are used as the fitness
function in a GA that selects param-
eters governing travel from the nest,
turning during the foragers’ search be-
havior, and use of site fidelity and/or
recruitment.

No Info Site Recruitment Both
0

500

1000

1500

2000

2500

3000

3500

F
oo

d
co

lle
ct

ed

Clustered
Power law
Random

3 Methods

3.1 Hardware

While our algorithms and architecture are intended to be used with a variety
of platforms, swarm performance will depend on the particular specifications
of the hardware on which those algorithms are implemented. Our robots are
built using easily obtained off-the-shelf components (Table 1) at a total cost
of $450 per robot. System architecture is based on the Arduino open-source
hardware platform, allowing for straightforward programming in a C++-style
language based on Wiring. Sensor error is described in Table 2.

3.2 Search Algorithm

The search behavior used by the robots to locate RFID tags is shown in Fig. 2.

1. Set Search Site Location: The robot begins at the nest in the center and
selects an initial search site location, encoded as a direction, d, and heading,
h. This location is initially chosen at random, but may be influenced by
memory or communication in subsequent foraging trips.

2. Travel to Search Site(yellow path) Travelling robots iterate through behav-
iors to avoid collisions with other robots, correct for motor drift, and com-
municate events with the coordination server.

3. Search for Tag (blue path): The robot moves in a correlated random walk
with direction at time t drawn from a normal distribution centered around
direction θt−1 and standard deviation SD = ω + γ/tδs, where ω determines
the degree of turning during an uninformed search (i.e. at a random location),
and γ/tδs determines an additional degree of turning at the beginning of an
informed search, and which decreases over time spent searching. Equation 1
results tight turns in an initially small area that expand to explore a larger
area over time.

4. Travel to Nest (pink path): The robot leaves the location of the found tag,
stepping toward the known nest location. The robot lays a pheromone on
its return trip if count C of other tags detected in the 8-cell neighborhood
of the collected tag is > 1. Pheromone evaporates exponentially with time.

51

Formica ex Machina 5

Table 1: Robots components

Component Description
Chassis The Open Source Robotics OSbase chassis is a four-motor,

treaded differential drive platform powered by a 7.4V LiPo
rechargeable battery

Microprocessor The Arduino Uno is an open-source, low-cost development board
for the Atmel ATmega328 microprocessor. The ATmega328 is
an 8-bit, 16 Mhz processor with 32K of onboard memory for
program storage, and +5V logic and onboard power regulation

Motor Shield The SparkFun Electronics L298 H-Bridge motor driver board
controls the four onboard motors. The shield attaches via stack-
ing headers onto the Arduino Uno

Wireless Shield The SparkFun Electronics WiFly Shield provides wireless com-
munication via standard 802.11b/g TCP protocol through the
Roving Networks RN-131C module. Control is via the Uno SPI
bus

Compass The SparkFun Electronics HMC6352 digital compass board uses
the Honeywell 6352 compass chip to report magnetic headings
with a published accuracy of 2.5◦. Module communication is via
Arduino Uno TWI bus

GPS The US GlobalSat EM-406a GPS receiver has a ceramic chip
antenna and reports data via NEMA-formatted strings over the
Arduino Uno hardware serial port with a 1Hz update rate. The
GPS is not used in these experiments

Ultrasound The Devantech SRF-05 ultrasonic rangefinder provides distance
measurements up to 4 meters and communicates via two stan-
dard Arduino Uno digital pins

RFID Reader/Writer The Parallax RFID module reads and writes data using standard
125kHz RFID tags and communicates over Arduino Uno pins
using serial port emulation via the Arduino library

Table 2: Sensor error: Compass data show errors in degrees at a fixed heading.
GPS data measures error from true location across 5000 data points collected in
each location. Odometry data are from 20 trials for each location and measures
ability to navigate to a point 5 meters away using programmed motor turning
rate, time and compass heading. Ultrasound errors are measured from a concrete
barrier 0.5 and 1.5 meters away.

Location 1 Location 2
Compass (◦) 2.5 (σ = 1.7) 3.0 (σ = 0.78)

GPS (m) 6.6 (σ = 3.6) 13 (σ = 5.7)
Odometry (cm) 20 (σ = 7.7) 22 (σ = 5.5)
Ultrasound (cm) 1.3 (σ = 0.38) 4.1 (σ = 4.1)

52

6 J. Hecker et al.

5. Set Next Search Location: On subsequent trips, d and h are determined by
either returning to the previously found tag location if C > 0, or following
a pheromone to a location identified by another robot.

Start

Travel to
Search Site

Travel to
Nest

Set Search
Location

Search for
Resources

Fig. 2: A robot begins its search at a globally shared central nest site (center
circle) and sets a search location. The robot then travels to the search
site (yellow line). Upon reaching the search location, the robot searches for
tags (blue line) until tags (red squares) are found or a probabilistic timeout
occurs. After searching, the robot travels to the nest (purple line).

3.3 Experimental Design

We conducted experiments on outdoor concrete surfaces. Each trial runs for a
maximum of one hour. A cardboard cylinder marks the center point and repre-
sents a home or ‘nest’ to which the robots return once they have located a tag.
This center point is used for localizing and error correction by the robots’ ultra-
sonic sensors. All robots involved in a trial are initially placed near the cylinder
to minimize dead reckoning error. We program each robot to stay within a 3m
radius ‘virtual fence’ to deter drift outside of the experimental area.

In every experiment, 32 RFID tags are arranged in one of three different
patterns: random, clustered, or power law. The random layout has tags scattered
throughout a ring between 50 cm and 200 cm in a uniform distribution (Figure
3(a)). The clustered layout has four piles of eight tags placed at 90◦ intervals at
50, 100, 150, and 200 cm in relation to the central nest (Figure 3(b)). The power
law layout uses piles of varying size and number: one large pile of eight tags at
125 cm, two medium piles of four tags at 75 and 175 cm, four small piles of two
tags at 50, 100, 150, and 200 cm, and eight randomly placed tags (Figure 3(c)).
Experiments are replicated under identical conditions for individual robots and
for groups of three bots.

Robot locations are continually transmitted over WiFi to a central server
and logged for analysis. When a tag is found, its unique identification number
is transmitted back to the server, providing us with a detailed record of tag
discovery. Note that tags can only be read once, simulating seed retrieval. The

53

Formica ex Machina 7

central server also acts as a coordinator for virtual pheromone trails. Locations
deemed important enough to require a pheromone value (i.e. those with two
or more tags discovered by the robot) are added to a list data structure. Each
location’s associated pheromone value is decayed over time by the server; when a
location’s pheromone value has dropped below a threshold of 0.001, it is removed
from the list. As each robot returns to the nest, the server randomly selects a
location from the list (if available) and transmits it to the robot.

Our simulations are design to replicate the behavior of the robots and their
experimental area. We measured the physical dimensions of the robots, their
speed while traveling and searching, and the range over which their RFID reader
can detect an RFID tag. We built the simulation with spatial dimensions that
reproduce the properties of the robot, their 3-m radius experimental area, and
the distribution of tags in this area. Like the real robots, simulated robots avoid
collisions by turning to the right to move past other robots. We allow the sim-
ulated robots to search for tags for an amount of time equivalent to an hour,
which we calibrated by the speed of the robots as they search and travel around
the experimental area. In addition to simulating the 3-m radius area to which
the physical robots were restricted, we also simulated the behavior of the robots
in a much larger area in which movement is not restricted to 3 m of the nest,
and tags are distributed in the same density but in such large numbers that even
large swarms of robots collect only a fraction of the available tags. We simulated
1- and 3-robot swarms, and also scaled up to 30 and 100 robot swarms to observe
the scaling properties of the system.

50 cm 200 cm

(a) (b) (c)

Fig. 3: 32 RFID tags layed out in (a) random, (b) clustered, and (c) power law
distributions.

4 Results

We analyze the rates at which robots retrieve tags from each distribution, indi-
vidually or in teams of three, in real robots and in simulation. Unless otherwise
noted, result for each experimental treatment are averaged over five robot exper-
iments and twenty experiments in simulation. Error bars indicate one standard
deviation of the mean.

54

8 J. Hecker et al.

Time to collect 32 randomly distributed tags in 5 physical and 20 virtual
experiments is shown in Figure 4. In robots and in simulation, three robots
collect tags faster than one robot, however, the speedup varies over the course of
the experiments (i.e., the red and blue lines are not parallel). When we average
time to collect n tags, where n varies between 1 and the maximum number of
tags collected, we find that 3 robots collect tags approximately twice as fast as
1 robot. The simulated experiments show slightly better scaling than the real
robots. It is not surprising that simulated teams of 3 robots are faster than real
teams of 3 robots because real robots have more difficulty with avoiding each
other, physical hardware limitations, imperfect localization and the possibility
that real robots confuse each other with the nest.

0 5 10 15
0

10

20

30

40

Number of tags

T
im

e
(m

in
ut

es
)

1 robot
3 robots

(a) Physical

0 5 10 15 20 25
0

10

20

30

40

Number of tags

T
im

e
(m

in
ut

es
)

1 robot
3 robots

(b) Virtual

Fig. 4: Time to collect tags in a random distribution for one and three robots in
physical (5 replicates) and virtual (20 replicates) experiments.

As more tags are found over the course of each experiment, it becomes in-
creasingly difficult to find new, remaining tags, and the foraging rate sometimes
decelerates. This ceiling effect limits our ability to observe differences between 1
and 3 robot teams. Figure 5 shows data from both physical and virtual experi-
ments for one and three robots. We also analyzed time to collect 25% of the tags
from the random, clustered, and power law distributions. We observe improved
performance with three robots which collect 25% of the tags 2.8 times faster
than one robot in the physical experiment and 2.3 times faster in the model.

Figure 6 illustrates the the rate of tag collection per minute of experiment
time for physical and virtual swarms. Each bar denotes the collection rate for a
swarm size over a particular tag distribution. This provides a normalized com-
parison between swarm sizes as well as distributions, regardless of overall exper-
iment runtime which may vary between trials. We were not able to distinguish
a significant effect of tag distribution on tag collection rate by the robots (Gen-
eral Linear Model [GLM]: p > 0.1; n = 18); but we did find a significant effect
of distribution on tag collection rate using the larger sample size afforded by
simulation (GLM: p < 0.001; n = 120). In the simulations, the greatest rate
of tag collection was in the clustered distribution, followed by the power law
distribution, followed by random. Note that this the reverse of the pattern with

55

Formica ex Machina 9

respect to distribution in Figure 1, a result of greater overall density of tags in
the robots’ experimental area, and therefore greater ease of discovering piles,
relative to the food densities used in our previous modeling work.

We look at the effects of pheromone trails on tag collection rate in Fig-
ure 7. Figure 7(a) compares physical and virtual results for three robots using
pheromones while searching for tags in a power law distribution. Results from the
physical experiment are averaged over three trials. Figures 7(b) and 7(c) show
simulated results for 1, 3, 30, and 100 robots collecting power law distributed
tags in an unbounded world.

5 Discussion

We have used Agent Based Models (ABM) and Genetic Algorithms (GA) to
translate foraging behaviors of seed harvesting ants into algorithms for robotic
swarms searching for RFID tags. We tested two sets of algorithms: one in which
robots rely on individual memory of locations of previously found tags (mimick-
ing site fidelity), and one in which robots communicate locations of previously
found tags (mimicking pheromones) as waypoints to a central server that acts
as the robots’ nest’. We tested each approach in single robots and teams of 3
robots, and observed that 3 robots find tags approximately twice as fast as 1
robot when using site fidelity. Pheromone-like communication improves forag-
ing success robots in simulation. We did not observe that pheromones improved
foraging in real robots, but in addition to small sample size, we attribute the
lack of success primarily to errors that were propagated by miscommunication.
Pheromones decrease performance when robots get lost and communicate incor-
rect locations to other robots. In simulation we found that pheromones improved
foraging in 3-robot teams by 10% to 50% (depending on distribution) over site
fidelity alone. Additionally, in simulation, the combination of pheromones and
site fidelity provided an approach that is scalable to swarms of 100 robots. We
suspect that improving the robots’ ability to navigate will reduce this problem.
The close correspondence between simulation and real robots in smaller swarms
make us optimistic that these results could be replicated in large robot swarms.

As in the ants, we found that site fidelity is an effective strategy for foraging.
This behavior has several benefits. First, it is extremely simple and easily en-
coded into very simple devices, including devices much simpler than the robots
we used here. Second, the approach is highly parallelizable because it requires
no communication among robots. Third, it leads to effective and small teams.

Our simulations of ants and our simulations of robots show that adding
pheromone communication increases foraging success, particularly on clustered
distributions (Figs. 1, 6). We demonstrated that it is possible to implement
pheromone communication in robots by having robots report the location where
they found a tag to a central server if the robot saw at least 2 additional tags
in the vicinity. The server then implements a simple pheromone algorithm and
reports those locations to other robots. When we add this pheromone-like be-
havior to our robots, we observe robots clearing large clusters of tags faster.
Simulations show more success with pheromones because simulated ants don’t
get lost or miscommunicate. Simulations suggest that this approach is highly
scalable. When we scale up to 100 robots, each robot is about half as efficient
as a single robot, meaning that teams of 100 robots collect resources 50 times
faster than a single robot (Fig. 7). This per-robot decline is largely due to the

56

10 J. Hecker et al.

Random Clumped Power law
0

10

20

30

T
im

e
(m

in
ut

es
)

1 robot
3 robots

(a) Physical

Random Clustered Power law
0

5

10

15

20

25

T
im

e
(m

in
ut

es
)

1 robot
3 robots

(b) Virtual

Fig. 5: Time to collect 25% of the tags from three different distributions for one
and three robots.

Random Clustered Power law
0

0.2

0.4

0.6

0.8

T
ag

s
pe

r
m

in
ut

e

1 robot
3 robots

(a) Physical

Random Clustered Power law
0

0.2

0.4

0.6

0.8
T

ag
s

pe
r

m
in

ut
e

1 robot
3 robots

(b) Virtual

Fig. 6: Rate of tag discovery calculated as total tags found normalized by exper-
iment length in minutes.

0 10 20 30
0

20

40

60

Number of tags

T
im

e
(m

in
ut

es
)

Physical
Virtual

(a)

0

10

20

30

T
ag

s
pe

r
m

in
ut

e

1 robot
3 robots
30 robots
100 robots

(b)

0

0.2

0.4

0.6

0.8

T
ag

s
pe

r
ro

bo
t

1 robot
3 robots
30 robots
100 robots

(c)

Fig. 7: Effects of using pheromone trails on tag collection

57

Formica ex Machina 11

increased distance the simulated robots travel–an unavoidable consequence of
central place foraging.

Our results suggest that the approach of combining individual memory with
communication at a central nest can transform simple robots into effective
swarms that are scalable and robust to the loss or malfunction of a few in-
dividuals. Results of our 3 robot experiments include several instances in which
one robot became lost or malfunctioned, but the other two robots continued their
task. Such systems could be used for search and rescue, searching for resources
or obstacles, and even biomedical applications using nano-robots. Our approach,
similar to the approach by [7] helps to lay a foundation to further explore the
interplay between simulation and experiments with real robots. Our next steps
are to use GAs to optimize parameters that lead to maximum efficiency and/or
robustness in the ABM, and then import those parameters into the robots. For
example, currently the robots’ turning angles during their random walk are based
on a rough approximation of how our simulated ants evolved to forage from GAs.
In future work, we will take the same approach and evolve optimal parameters
given the physical attributes of the robots already encoded in the ABM. We will
also evolve parameters to determine the optimal balance between reliance on in-
dividual memory versus pheromone communication. We will extend our analysis
to different kinds of resource distributions, including ones that may be dynamic
by encoding tags with resources that appear and disappear over time. Finally,
this work will be extended by simulating and replicating in our robots, features
of some large ant colonies–the use of mobile nests (as exemplified by army ants)
and the use of multiple nests (as exemplified by invasive argentine ants).

References

1. T. Bailey and H. Durrant-Whyte. Simultaneous localization and mapping (SLAM):
Part II. Robotics & Automation Magazine, IEEE, 13(3):108–117, 2006.

2. S. Banerjee and M. Moses. Scale invariance of immune system response rates and
times: perspectives on immune system architecture and implications for artificial
immune systems. Swarm Intelligence, 4(4):301–318, 2010.

3. B. Beverly, H. McLendon, S. Nacu, S. Holmes, and D. Gordon. How site fidelity
leads to individual differences in the foraging activity of harvester ants. Behavioral
Ecology, 20(3):633–638, 2009.

4. E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm intelligence: from natural to
artificial systems. Oxford University Press, USA, 1999.

5. Y. Cao, A. Fukunaga, and A. Kahng. Cooperative mobile robotics: Antecedents
and directions. Autonomous robots, 4(1):7–27, 1997.

6. M. Dorigo, M. Birattari, et al. Swarmanoid, the movie. In AAAI-11 Video Pro-
ceedings. AAAI Press, 2011. Winner of the “AAAI-2011 Best AI Video Award”.

7. M. Dorigo, D. Floreano, et al. Swarmanoid: a novel concept for the study of hetero-
geneous robotic swarms. Technical report, Technical Report TR/IRIDIA/2011-014,
IRIDIA, Université Libre de Bruxelles, Brussels, Belgium, 2011.

8. M. Dorigo and E. Sahin. Swarm robotics–special issue editorial. Autonomous
Robots, 17(2-3):111–113, 2004.

9. M. Dorigo, V. Trianni, E. Şahin, R. Groß, T. Labella, G. Baldassarre, S. Nolfi,
J. Deneubourg, F. Mondada, D. Floreano, et al. Evolving self-organizing behaviors
for a swarm-bot. Autonomous Robots, 17(2):223–245, 2004.

10. H. Durrant-Whyte and T. Bailey. Simultaneous localization and mapping: part I.
Robotics & Automation Magazine, IEEE, 13(2):99–110, 2006.

11. T. Flanagan, K. Letendre, W. Burnside, G. Fricke, and M. Moses. How Ants Turn
Information into Food. Proceedings of the 2011 IEEE Conference on Artificial Life,
pages 178–185, 2011.

58

12 J. Hecker et al.

12. T. Flanagan, K. Letendre, W. Burnside, G. Fricke, and M. Moses. How Ants Turn
Information into Food. Proc. of the 2011 IEEE Conf. on ALife, 2011.

13. T. Flanagan, K. Letendre, and M. E. Moses. Quantifying the Effect of Colony Size
and Food Distribution on Harvester Ant Foraging. PLoS ONE, in review.

14. D. Goldberg. Genetic algorithms in search, optimization, and machine learning.
Addison-Wesley Professional, 1989.

15. D. Gordon. The spatial scale of seed collection by harvester ants. Oecologia,
95(4):479–487, 1993.

16. B. Hölldobler. Recruitment behavior, home range orientation and territoriality in
harvester ants, Pogonomyrmex. Behav. Ecol. and Sociobio., 1(1):3–44, 1976.

17. M. Krieger, J. Billeter, and L. Keller. Ant-like task allocation and recruitment in
cooperative robots. Nature, 406:992–995, 2000.

18. K. Letendre and M. E. Moses. Ant foraging strategies: Site fidelity and recruitment
alone and in combination. in review.

19. R. Mayet, J. Roberz, T. Schmickl, and K. Crailsheim. Antbots: A feasible visual
emulation of pheromone trails for swarm robots. Swarm Intell., pages 84–94, 2011.

20. C. Moeslinger, T. Schmickl, and K. Crailsheim. Emergent flocking with low-end
swarm robots. Swarm Intelligence, pages 424–431, 2011.

21. F. Mondada, G. Pettinaro, I. Kwee, A. Guignard, L. Gambardella, D. Floreano,
S. Nolfi, J. Deneubourg, and M. Dorigo. SWARM-BOT: A swarm of autonomous
mobile robots with self-assembling capabilities. In Proc. of the Intl. Workshop on
Self-organisation and Evolution of Social Behaviour, pages 307–312, 2002.

22. M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM: A factored
solution to the simultaneous localization and mapping problem. In Proceedings of
the National conference on Artificial Intelligence, pages 593–598. Menlo Park, CA;
Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2002.

23. M. Moses. Metabolic scaling from individuals to societies. PhD thesis, University
of New Mexico, 2005.

24. M. Moses and S. Banerjee. Biologically Inspired Design Principles for Scalable,
Robust, Adaptive, Decentralized Search and Automated Response (RADAR). Pro-
ceedings of the 2011 IEEE Conference on Artificial Life, pages 30–37, 2011.

25. J. Mull and J. MacMahon. Spatial variation in rates of seed removal by harvester
ants (Pogonomyrmex occidentalis) in a shrub-steppe ecosystem. American Midland
Naturalist, pages 1–13, 1997.

26. S. Nolfi and D. Florin. Evolutionary robotics: The biology, intelligence, and tech-
nology of self-organizing machines. MIT Press, 2000.

27. L. Parker. Designing control laws for cooperative agent teams. In Robotics and
Automation, 1993. Proceedings., 1993 IEEE International Conference on, pages
582–587. IEEE, 1993.

28. A. Sharkey. Robots, insects and swarm intelligence. Artificial Intelligence Review,
26(4):255–268, 2006.

29. R. Solé, E. Bonabeau, J. Delgado, P. Fernández, and J. Maŕın. Pattern formation
and optimization in army ant raids. Artificial Life, 6(3):219–226, 2000.

30. A. Stranieri, E. Ferrante, A. E. Turgut, V. Trianni, C. Pinciroli, M. Birattari,
and M. Dorigo. Self-organized flocking with a heterogeneous mobile robot swarm.
In T. Lenaerts, M. Giacobini, H. Bersini, P. Bourgine, M. Dorigo, and R. Dour-
sat, editors, Advances in Artificial Life, ECAL 2011: 11th European Conference
on the Synthesis and Simulation of Living Systems, pages 789–796. MIT Press,
Cambridge, MA, 2011.

31. V. Trianni and S. Nolfi. Engineering the Evolution of Self-Organizing Behaviors
in Swarm Robotics: A Case Study. Artificial Life, 17(3):183–202, 2011.

32. R. Vaughan, K. Stoy, G. Sukhatme, and M. Mataric. LOST: Localization-space
trails for robot teams. IEEE Robotics and Automation, 18(5):796–812, 2002.

33. M. Wittlinger, R. Wehner, and H. Wolf. The ant odometer: stepping on stilts and
stumps. Science, 312(5782):1965, 2006.

59

60

Short Abstract — In ovarian cancer, the morphology of
microscopic tumors depends on local characteristics of tissues
to which cells initially attach in the peritoneal cavity. We use an
integrated experimental and modeling approach to study tumor
growth during cancer relapse, incorporating data from a mouse
xenograft model into a cellular Potts model. Simulations
include tumor spheroid attachment to organ surfaces in the
abdominal cavity, followed by chemotactic invasion where
permitted by the features underlying the mesothelial layer at
different sites [1]. The in silico model also includes the essential
features of angiogenesis; oxygen gradient fields indicate that
new blood vessel formation is not dependent on the tumor mass
reaching a hypoxic state.

Keywords — ovarian cancer relapse, cellular Potts, SKOV3-
IP1, Compucell3d, in silico model, cellular automaton

I. PURPOSE

N ovarian cancer, the majority of patients are not
diagnosed until surgery is needed to remove large tumor
masses. Following surgical debulking and

chemotherapy, there is significant risk of relapse due to
chemoresistant tumor cells remaining in the peritoneal cavity
[2]. In our xenograft model, human ovarian tumor cells
(SKOV3.ip-GFP) are injected into the peritoneum of
immunocompromised mice. Tumors develop within a few
weeks. We note that the morphology and angiogenesis
potential of new micro-tumors is highly dependent on local
physical and chemical characteristics of tissues to which
they attach in the peritoneal cavity. We postulate that these
features have the potential to determine the local efficacy of
specific classes of cancer therapeutics (i.e. small molecules
vs. protein-based therapies such as monoclonal antibodies).
These hypotheses will be explored using mathematical
models that consider local penetrance as well as route of
delivery.

I

II.METHODS

Data from the mouse model was used to parameterize
mesoscopic cellular Potts models (using Compucell3d [3])
of micro-tumor morphologies on mesothelium overlying
muscle or attached to the mesentery (a dual mesothelial
membrane containing vascular bundles surrounded by fat).
We incorporate tumor cell growth, cell division, chemotaxis,

 Acknowledgements: This work was funded by NIH R01 CA119232 and
aligned with the NM Center for Spatiotemporal Modeling.

1Pathology Department, University of New Mexico, Albuquerque, NM.
E-mail: bwilson@salud.unm.edu, E-mail: kkanigel@unm.edu
2Biocomplexity Institute, University of Indiana. E-mail:

ashirini@indiana.edu
3Department of Math and Statistics, Georgia State University. E-mail:

jiang@lanl.gov

invasion, and O2 and glucose consumption. When possible,
we included experimental values directly in the simulation,
such as adipocyte secretion of the chemotatic factor IL-8 [4],
concentrations of O2, glucose, and IL-8 in blood and
peritoneal fluid, and normal cell volumes (such as of
adipocytes) in our mice. Otherwise, model parameters were
systematically tuned to re-create experimental values, such
as rate of invasion/chemotaxis of ovarian cancer cells into
mesothelium [5]. We compared simulation results to our
mouse model of ovarian cancer peritoneal metastasis.

III. RESULTS & CONCLUSIONS

A. Models of spheroids attached to the
mesothelium where the underlying
tissue is characterized by “tight” cellular
junctions with no space between cells
(such as at the surface of the small
intestine (image A)) generate a non-
invasive semi-spheroidal morphology in

small tumors, both in silico and in vivo.
B. A chemotactic chemical gradient

originating from adipocytes generates a
tumor growth pattern (B1) different
from that created when dual signals
from adipocytes and vessels are
included (B2; images are 2-D sections
of 3-D simulations.). Similarities to the
dual-signal model are seen in GFP
tumors in the mesentery of the
xenografted mice. We will continue to
explore this hypothesis using our mouse
xenograft model.

C. Simulations show that tumors ~30 cells wide,
comparable to those excised from mice at 1 week, are small

enough that all cells are sufficiently
oxygenated (image C: cell
consumption of O2 does not create a
hypoxic area at the center of the
spheroid; red = maxO2). Nevertheless,
tumors 1 and 3 weeks old are fully
vascularized. Our microarray data also
shows that these cells constitutively

express the angiogenic factor VEGF, and upregulate another,
Ang2, in tumors. We are building simulations of hypoxia-
independent tumor angiogenesis and will perform
morphometric analysis on simulated tumor vasculature
patterns for comparison to the uniform vasculature seen in
vivo.

These models lay the foundation for modeling tumor cell
death after the delivery of different classes of drugs via
either intravascular or intraperitoneal injection. Results of

Ovarian cancer relapse: micro-carcinomas vary
in form with peritoneal niche

 Kimberly Kanigel-Winner 1 , Mara Steinkamp1, Suzy Davies1, Abbas Shirinifard2, Yi Jiang3, and Bridget S. Wilson1

A

B2

C

B1

61

these models will guide the design of preclinical trials in
mice engrafted with ovarian tumor cells.

REFERENCES

[1] Steinkamp, Mara, et al. “Ovarian tumor attachment, invasion and
vascularization reflect unique microenvironments in the peritoneum:
Insights from xenograft and mathematical models,” in preparation.

[2] Shield, Kristy, M Leigh Ackland, Nuzhat Ahmed, and Gregory E Rice.
“Multicellular spheroids in ovarian cancer metastases: Biology and
pathology.” Gynecologic oncology 113, no. 1 (April 2009): 143-8.

[3] http://compucell3d.org
[4] Iwanicki, M. P., et al. (2011) Ovarian Cancer Spheroids Use Myosin-

Generated Force to Clear the Mesothelium. Cancer Discovery. July
2011, 1:144-157.

[5] Henrichot, Elvire, et al. (2005) Production of chemokines by
perivascular adipose tissue: a role in the pathogenesis of
atherosclerosis? Arteriosclerosis, thrombosis, and vascular biology 25
(12) (December 1): 2594-9.

62

63

Breaking the O(nm) Bit Barrier: Secure Multiparty Computation

with a Static Adversary

Varsha Dani
University of New Mexico

Valerie King
University of Victoria

Mahnush Movahedi
University of New Mexico

Jared Saia
University of New Mexico

Abstract
We describe scalable algorithms for secure multiparty computation (SMPC). We assume a

synchronous message passing communication model, but unlike most related work, we do not
assume the existence of a broadcast channel. Our main result holds for the case where there
are n players, of which a 1/3 − ε fraction are controlled by an adversary, for ε any positive
constant. We describe a SMPC algorithm for this model that requires each player to send
Õ(n+m

n +
√
n) messages and perform Õ(n+m

n +
√
n) computations to compute any function f ,

where m is the size of a circuit to compute f . We also consider a model where all players are
selfish but rational. In this model, we describe a Nash equilibrium protocol that solve SMPC
and requires each player to send Õ(n+m

n) messages and perform Õ(n+m
n) computations. These

results significantly improve over past results for SMPC which require each player to send a
number of bits and perform a number of computations that is θ(nm).

64

1 Introduction

In 1982, Andrew Yao posed a problem that has significantly impacted the weltanschauung of
computer security research [22]. Two millionaires want to determine who is wealthiest; however,
neither wants to reveal any additional information about their wealth. Can we design a protocol
to allow both millionaires to determine who is wealthiest?

This problem is an example of the celebrated secure multiparty computation (SMPC) problem.
In this problem, n players each have a private input, and their goal is to compute the value of a
n-ary function, f , over its inputs, without revealing any information about the inputs. The problem
is complicated by the fact that a hidden subset of the players are controlled by an adversary that
actively tries to subvert this goal.

SMPC abstracts numerous important problems in distributed security, and so, not surprisingly,
there have been thousands of papers written in the last several decades addressing this problem.
However, there is a striking barrier that prevents wide-spread use: current algorithms to solve
SMPC are not resource efficient. In particular, if there are n players involved in the computation
and the function f can be computed by a circuit with m gates, then most algorithms require each
player to send a number of messages and perform a number of computations that is Ω(mn) (see,
for example, [11, 12, 5, 2, 15, 10, 16, 17, 3]).

Recent years have seen exciting improvements in the amortized cost of SMPC, where the number
of messages and total computation done per player can be significantly better than Θ(mn) [7, 9, 8].
However, the results for these algorithm hold only in the amortized case where m is much larger
than n, and all of them have additional additive terms that are large polynomials in n (e.g. n6).
Thus, there is still a strong need for SMPC algorithms that are efficient in both n and m.

1.1 Formal Problem Statement

We now formally define the SMPC problem. As previously stated, there are n players, and each
player i has a private input, xi. Further there is a n-ary function f that is known to all players.
The goal is to to ensure that: 1) all players learn the value f(x1, x2, . . . , xn); and 2) the inputs
remain as private as possible: each player i learns nothing about the private inputs other than
what is revealed by f(x1, x2, . . . , xn) and xi.

The main complication is the fact that up to a 1/3 fraction of the players are assumed to be
controlled by an adversary that is actively trying to prevent the computation of the function. We
will say that the players controlled by the adversary are bad and that the remaining players are
good. The adversary is static, meaning that it must select the set of bad players at the start of
the algorithm. A careful reader may ask: How can we even define the problem if the bad players
control their own inputs to the function and thereby can exert control over the output of f?

The answer to this question is given by Figure 1. In the left illustration in this figure, there are
5 players that are trying to compute a function over their 5 private inputs. If there is a trusted
external party, as shown in the center of this illustration, the problem would be easy: each player
sends their input to this trusted party, the party performs the computation, and then sends the
output of f back to all the players. In essence, this is the situation we want to simulate with our
SMPC algorithm. The right illustration of Figure 1 shows this goal: the SMPC algorithm simulates
the trusted party. In particular, we allow all players, both good and bad, to submit a single input
to the SMPC algorithm. The SMPC algorithm then computes the function f based on all of these
submitted inputs, and sends the output of f back to all players.

This problem formulation is quite powerful. If f returns the input that is in the majority, then

1 65

X1
f

fX2

X3
X4

X5

ff

f

X1
f

f
X2

X3X4

X5

ff

f
SMPC

Figure 1: Schematic of SMPC problem

SMPC enables voting. If f returns a tuple containing 1) the index of the highest variable; and
2) the value of the second highest variable, then SMPC enables a simple Vickrey auction, i.e. the
highest bidder wins and pays the second highest bid. If f returns the output of a digital signing
function, where the private key equals the sum of all player inputs modulo Zp for some prime p,
then SMPC enables group digital signatures, i.e. the entire group can sign a document, but no
individual player learns the secret key. In short, the only limitation is determined by whether or
not the function f is computable.

Our communication model is as follows. We assume there is a private and authenticated com-
munication channel between ever pair of players. However, we assume that the adversary is com-
putationally unbounded, and so make no cryptographic hardness assumptions.1 Also, unlike much
past work on SMPC, we do not assume the existence of a public broadcast channel. Finally, we note
that we assume that the good players strictly follow the protocol, and thus do not form coalitions
in which information is exchanged (i.e. there are no so called “gossiping” good players).2

1.2 Our Results

The main result of this paper is as follows.

Theorem 1.1. Assume there are n players, no more than a 1/3 fraction of which are bad, and a
n-ary function f that can be computed using m gates. Then if the good players follow Algorithm
1, with high probability, they can solve SMPC, while ensuring:

1. Each player sends at most Õ(n+mn +
√
n) messages,

2. Each player performs Õ(n+mn +
√
n) computations.

An additional result of this paper deals with the situation where all players are selfish but
rational. Our precise assumption for the rational players is as follows. The rational players’ utility
functions are such that they prefer to learn the output of the function, but also prefer that other
players not learn the output. Following previous work on rational secret sharing [19, 13, 14, 20],
we assume all the players have the same utility function, which is specified by constants Uk where

1In the cryptographic community, this is frequently called unconditional security.
2Technically, we can maintain privacy, even with a certain amount of information exchange among the good

players. See Section 3 for details.

2 66

k is the number of players who learn the output. Here U1 is the utility to a player if she alone
learns the output, Un is the utility if she learns the secret and all other players learn it as well,
and finally U− is the utility when the player does not learn the output. We further assume that
U1 > U2 > . . . > Un > U−, so that the players’ preferences are strict.

A key goal is to design a protocol that is a Nash equilibrium in the sense that no player can
improve their utility by deviating from the protocol, given that all other players are following the
protocol. Our main result in this model is the following.

Theorem 1.2. Assume there are n players and each player is rational with utility function given
as above. Then there exists a protocol (see Section 2.5) such that 1) it is a Nash equilibrium for all
players to run this protocol and 2) when all players run the protocol then, with high probability,
they solve SMPC, while ensuring:

1. Each player sends at most Õ(n+mn) messages,

2. Each player performs Õ(n+mn) computations.

The rest of this paper is organized as follows. In Section 2, we describe our algorithms for
scalable SMPC. We first present the case with an adversary, and then in Section 2.5, describe the
changes that are needed to handle the case where all players are rational. The proofs of correctness
for our algorithms are in Section 3. We conclude and give problems for future work in Section 4.

2 Our Algorithm

We now describe the algorithm that achieves our result for the model where players are either good
or bad (Theorem 1.1).

The main idea behind reducing the amount of communication required for the computation is
that rather than having each player communicate with all the other players, we will subdivide the
players into groups called quorums of logarithmic size. The players in each group will communicate
only with members of their own group and members of certain other groups. The number of other
groups a particular group is required to communicate with is a function of the circuit size.

If any single quorum were to have too many bad players then they could severely disrupt the
computation, so the subdivision must spread the bad players around so that the fraction of bad
players in each quorum remains less than 1/3. We will call a quorum good if more than two thirds
of the players in it are good. How are these quorums to be formed? This would be easy to achieve
(with high probability) if there were a trusted mediator who could form the groups randomly and
assign each player to their group. In the absence of a mediator, the players must achieve this
subdivision themselves. To do this, we appeal to the following result of King, Lonergan, Saia and
Trehan [18].

Theorem 2.1 (Theorem 2 of [18]). Let n be the number of processors in a fully asynchronous
full information message passing model with a static adversary. Assume that there are at least
(2/3 + ε)n good processors. Then for any positive constant ε, there exists a protocol which w.h.p.
brings all good processors to agreement on n good quorums; runs in polylogarithmic time; and
uses Õ(

√
n) bits of communication per processor. If all players are rational the algorithm runs in

polylogarithmic time; and uses Õ(1) bits of communication per processor.

We will also require certain primitives for multiparty protocols. A 1/3 fault-tolerant Verifiable
Secret Sharing scheme for k players, henceforth VSS(k), is an algorithm for a dealer to deal shares
of a secret which he holds to the players, such that (1) no set of fewer than a third of the players

3 67

can get any information about the secret and (2) the secret can be reconstructed from the shares
even if upto a third of them are missing or corrupted (i.e. if upto a third of the players are bad)
Moreover, the players then run a verification protocol, at the end of which the good players either
agree that a valid secret has been shared or agree to disqualify the dealer (if he did not deal shares
consistent with any secret) and take the secret to be a preset default value. Such a sharing and
verification scheme is described in the work of Ben-Or, Goldwasser and Wigderson (BGW) [4].
This uses a constant number of rounds of communication and has zero probability of error. 3

BGW [4] also describe an errorless protocol for SMPC that tolerates up to a third of the players
being bad. (See BGW [4] Theorem 3). The number of rounds of communication depends at most
linearly on the size of the circuit being computed.

We will make extensive black box use of both these primitives in our algorithm. Note that these
protocols involve all-to-all communication amongst the players. For this reason we will refer to the
SMPC primitive as HEAVYWEIGHT-SMPC. However, in our protocol, at most three quorums will
be involved in any given run of the black box SMPC or VSS. Thus the amount of communication
per run of HEAVYWEIGHT-SMPC will have only a polylogarithmic dependence on n.

We also note that the VSS and SMPC primitives require broadcast channels in addition to
secure private channels. Within our quorums, we simulate broadcast channels using Byzantine
Agreement to decide whether the same message was sent to everyone. Since the quorum size is
just logarithmic, we can use any polynomial time and algorithm for Byzantine agreement, such as
Bracha’s protocol [6].

We assume that all computations are done over a finite field F. It is convenient for presentation
to assume that all gates have in degree 2 and out degree at most 2, but we can tolerate arbitrary
constant degrees.

2.1 Setup

We first give a high level description of our algorithm. The first step is to build a network, which
we call G, based on the circuit C. For every gate in the circuit C, there will be a node in G, which
we will refer to as an internal node. In addition, G will have n extra nodes, corresponding to the
n inputs of C. We will call these input nodes. For every wire from some gate to another gate in
C, there will be an edge connecting the corresponding nodes in G. Further, for every wire from an
input to a gate in C, there will be an edge from the corresponding input node to the corresponding
internal node in G.

The players use the algorithm from Theorem 2.1 to divide themselves into n quorums each of
size θ(log n). Each quorum is assigned to some node in G. Recall we have m+ n nodes in G. We
assume a canonical numbering of the nodes in G and of the n quorums, and we assign the quorum
numbered i to to any node with number j s.t. (j mod n) = i. Note that each quorum is thus
assigned to at most dm+n

n e nodes.

2.2 Extended Example

We now work through an extended example of our algorithm. The formal description of the
algorithm is given in Section 2.4.

Figure 2 illustrates the example we will use to describe our algorithm. The top left illustration

3This scheme uses error correcting codes to achieve the verification. Other such schemes exist, which use Zero
Knowledge proof techniques for verification and can tolerate up to half the players being faulty; see [21]. These,
however, have an exponentially small but positive probability of error.

4 68

G1

G1Shares of R9

1)

Shares of R1,
x1+ R1

Shares of R2,
x2+R2

2)

G1(x1,x2)+R9

SMPC

G1

SMPC

G1(x1,x2)+R9 G1(x1,x2)+R9

G2 G3 G4

G6G5

G7

X1 X3 X5 X7X2 X4 X6 X8

G1 G2 G3 G4

G6G5

G7

X1+R1,
Shares of R1

X2+R2,
Shares of R2

X3+R3,
Shares of R3

X4+R4,
Shares of R4

X5+R5,
Shares of R5

X6+R6,
Shares of R6

X7+R7,
Shares of R7

X8+R8,
Shares of R8

Figure 2: Example of Quorum based SMPC

in this figure describes a simple circuit with m = 7 gates and n = 8 inputs. For simplicity, this
circuit is small; in a real application, we would expect both m and n to be much larger. Also,
for simplicity, in this example, the circuit is a tree; however, our algorithm works for an arbitrary
circuit. The circuit in this example computes an 8-ary function, f , that we want to compute in
our SMPC. The gates have labels G1, . . . , G8, that represent the functions computed by each gate.
Each of the players at the bottom sends its input to some gate.

The top right illustration in the figure shows the layout of the quorums based on this circuit.
Each oval in this illustration represents a quorum. There are n + m ovals, m for each gate in the
circuit and n for each player. Recall that using the algorithm from Theorem 2.1, we can create n
quorums with the properties that 1) each quorum contains less than a 1/3 fraction of bad players;
2) each quorum contains θ(log n) players; and 3) each player is in θ(log n) quorums. We will map
these n quorums to the m+ n ovals. It will be the case that the number of ovals is larger than the
number of actual quorums, requiring us to map some quorums to multiple ovals. However, each
quorum will be mapped to at most d(n + m)/ne ovals. Moreover, as we will see, it will not cause
problems even if we map the same quorum to neighboring ovals. The algorithm begins by getting
inputs from the players. In this illustration, each player i computes a value Ri selected uniformly
at random from all values in the field F. It then computes xi + Ri, the value of its private input
plus Ri and sends this value to all players in the quorum above it. Note that Ri “protects” the
value xi since xi + Ri is distributed completely uniformly at random. Finally, player i uses the

5 69

verifiable secret sharing (VSS) algorithm from [4] to create shares of Ri, and to send one share to
each player in the quorum above. These shares have the property that any 2/3 fraction of them
can be used to reveal the value Ri, but less than a 2/3 fraction reveals no information about Ri.

The two illustrations in the bottom part of the figure show how three quorums compute the
output of each gate. We wish to maintain the following invariant: the value computed at any oval
is the value that would be computed at the corresponding gate of C, masked by a random element
of the field. The mask is jointly reconstructed by sufficiently many players at the oval, but it is
not known to any individual player. For simplicity, these bottom illustrations focus solely on the
computation occurring for G1; similar computations occur for all the other gates. Three quorums
are involved in the computation for G1: the two bottom quorums provide the randomized inputs,
and the top quorum provides a value (R9) that is used to randomize the output.

The bottom left illustration shows what is known at each quorum before the computation of
G1. All players in the bottom left quorum know the value x1 + R1. Moreover, each player in this
quorum has a share of the value R1. These shares again have a 2/3 threshold property: any 2/3
fraction of them can be used to reconstruct R1, but any set of less than 2/3 of them reveals no
information about R1. The players in the bottom right quorum have similarly knowledge: they
all know x2 + R2 and they each have shares of R2 with a 2/3 threshold property. Finally, the
players in the top quorum have previously run a simple distributed algorithm to ensure that they
each have a share of a value, R9 that is selected uniformly at random from the field F. These
shares of R9 are constructed with the 2/3 threshold property; this property can be ensured done
by repeated applications of the VSS algorithm from [4]. Finally, the players in all three quorums
use HEAVYWEIGHT-SMPC to compute the value G1(x1, x2) +R9.

We note two important facts about this SMPC. First, the inputs (x1+R1, x2+R2, shares of R1,
shares of R2, shares of R9) contain enough information to compute the value G1(x1, x2)+R9 in the
SMPC, even if the bad players lie about their inputs. Second, the SMPC algorithm occurs over only
θ(log n) players, so even a heavyweight protocol which runs in time and message cost polynomial
in the number of players will incur latency and message costs that are just polylogarithmic in n.

The bottom right illustration shows the result after the computation of G1. Each player in
the three quorums has learned the value G1(x1, x2) + R9. Note that no player at any of the three
quorums has (individually) learned any information about the value G1(x1, x2), since the mask R9

which no individual knows, is uniformly random, and hence the computed value, G1(x1, x2) + R9

is also uniformly random over the field. In addition, note that we now have a situation for the top
quorum where 1) every player knows the output value plus a random element R9; and 2) the shares
of R9 are distributed among the players in such a way that the value R9 can be reconstructed if
and only if the good players in the quorum send the shares to each other. Thus, the top quorum
is in the same situation now with respect to the value G1(x1, x2) as the bottom quorums were in
with respect to x1 and x2 previously. Hence, the same procedure can be repeated as compute the
values for the gates in the next layer of the circuit.

2.3 Some Details

The output of the quorum associated with the root node in G is the output of the entire algorithm.
The last step of the algorithm is to send this output to all players. To do that, we construct a
complete binary tree using the n quorums, with root quorum equal to the quorum that knows the
output of the circuit. We then use majority filtering to pass the output down to all the players.
Specifically, when a player receives the output message from all players in its parent quorum, it

6 70

computes the majority of all messages, and considers the majority of the messages as his correct
output; then, it sends the output to all players in any quorums below.

Note that it may be the case that a player p participates k > 1 times in the quorums performing
HEAVYWEIGHT-SMPC in Figure 2. In such a case, we allow p to play the role of k different
players in the SMPC, one for each quorum to which p belongs. This ensures that the fraction of bad
players in the heavy-weight SMPC is always less than 1/3. Also, the heavy-weight SMPC protocol
of [21] maintains privacy guarantees even in the face of gossiping coalitions of constant size. Thus,
p will learn no information beyond the output and its own inputs after running this protocol.

We observe that the output of the last node of G is the output of the algorithm. The last step
of the algorithm is to send the output to all players. To do that, players reuse their quorums and
build a complete binary tree with n nodes and assign quorum i to node i in the tree. Each player
receives the output message from all players in its parent node and considers the majority of the
messages as its correct output. Then, it sends the output to all players of its children nodes.

Finally, note that in this algorithm, each player participates in θ(log n) quorums; each quorum
is responsible for at most d(n+m)/ne ovals; and the SMPC performed at an oval has resource cost
which is polylogarithmic in n. Moreover, each player runs the VSS algorithm to send its input to
a single quorum initially. Thus, in this algorithm, each player sends Õ(n+mn) bits and is involved

in the computation of Õ(n+mn) gates.

2.4 Formal Description

We assume that the function to be computed is presented as a circuit C with c gates, numbered
1, 2, . . . ,m, where the gate numbered 1 is the output gate. The high level picture of the commini-
cation network is a directed graph G, with c+n nodes numbered 1, 2, . . . c+n. The first c of these
are “gate nodes”, node i corresponding with gate i of the circuit, and there are edges between pairs
of them whenever the corresponding pair of gates is connected by a wire. The direction of the edge
is the direction of flow of computation in the circuit C. Note that the node numbered 1 is the node
corresponding to the output gate. We will sometimes refer to this as the root node and denote it
ρ. The additional n nodes are “input nodes” and input node i has an edge pointing to gate node
j if the ith input wire feeds into gate j in C. For a given node v, we will refer to any node w to
which v has an edge as a parent of v, and we will refer to any node x which has an edge to v as
a child of v. Finally, for a given node v, we will say the height of v is the number of edges on the
longest path from any leaf node to v.

The basic structure of the algorithm is as follows. First, all the players form quorums and each
quorum is assigned to multiple nodes in G, so that each node in G is represented by a unique quorum
(Algorithm 2). Then each player commits its input to the quorum at the corresponding input
node in G (Algorithm 3). Then all quorums representing gate nodes generate shares of uniformly
random field elements. These shares will be needed as inputs to the subsequent heavyweight SMPC
protocols.

Next we begin computation of the gates of the circuit. For every node g in G associated with a
gate in C, we do the following. At a time proportional to the height of the gate g, all participants
in the computation of g (i.e. the quorums at g and the quorums at the two nodes pointing to g in
the circuit) will run a heavyweight SMPC protocol to compute a masked version of the value at g.
(Algorithm 5). Then the quorum at the root node will unmask the output (Algorithm 6) and it
will be sent to all the players via a binary tree (Algorithm 7). In order for the players to coordinate
their operations, we will need to define the following quantities. Let

7 71

TQF = TQF(n) denote an upper bound on the time taken for n players to run the quorum
formation algorithm.

TVSS = TVSS(log n) denote an upper bound on the input commitment via VSS.

TR = TR(log n) is the maximum time taken by the players in a single quorum to jointly
generate shares of a random field element.

TSMPC = TSMPC(log n) denote an upper bound on the time it takes O(log n) players to perform
a heavyweight SMPC.

We remind the reader that in our model local computation is instantaneous, and that a single “time
unit” refers to the time taken for a message sent by a processor to reach its intended recipient.

We now present a formal description of our scalable SMPC protocol in Algorithm 1 and related
subroutines. For convenience, we will sometimes abuse notation by allowing a node v ∈ G to refer
both to the node itself and to the quorum associated with the node.

Algorithm 1 Main Algorithm

Phase 1

1. At time t = 0 all players run the quorum formation algorithm (Algorithm 2).

2. At time t = TQF all players run the input commitment algorithm (Algorithm 3).

3. At time t = TQF + TVSS, for each gate simultaneously, players run the random number gener-
ation algorithm (Algorithm 4).

4. At time t = TQF + TVSS + TR, for each gate g simultaneously, players initiate the computation
of gate g (Algorithm 5).

Phase 2

5. At time t = TQF + TVSS + TR + hρTSMPC, the players at the root node reconstruct the output
(Algorithm 6). Here hρ is the height of the root node.

6. At time t = TQF + TVSS + TR + (hρ + 1)TSMPC, all players perform the output propagation
algorithm (Algorithm 7)

2.5 Rational Players

We now show how to modify Algorithm 1 to handle rational players (Theorem 1.2); First, we note
for the rational case, the graph G is equivalent to that in Algorithm 1. Moreover, the mapping
from quorums to nodes in G is equivalent, except for the efficiency of the algorithm that creates
the quorums. In particular, in the case where all players are rational, as is stated in Theorem 2.1,
we require each player to send only Õ(1) bits in order to create the set of n quorums.

Once the quorums have been formed, much of the algorithm, remains the same, including
the input commitment and the (masked) computation of each gate. It is only at the output
reconstruction stage of the algorithm that things need to change. The problem is that the SMPC
protocol being used as a black box does not make any guarantees about all the players learning

8 72

Algorithm 2 Quorum Formation

This algorithm begins at time t = 0 and all players participate.

1. Run the algorithm in [18] to form n good quorums of size O(log n), numbered 1, 2, . . . , n, with
the following properties:

• All quorums have at least a 2/3 fraction of good players.
• Each player participates in O(log n) quorums.

2. Each player identifies the nodes in G represented by his quorums, and the neighboring nodes
in the graph G. The rule here is that quorum i represents gate j if i = j mod n.

3. At the end of this protocol, each player knows

• which O(log n) quorums to participate;
• which other players are in each of those quorums;
• which gates/nodes are represented by those quorums; and
• which quorums represent the neighboring nodes (with whom it is necessary to commu-

nicate) and which players are in each of those quorums.

Algorithm 3 Input Commitment

This protocol for each input node begins at time t = TQF. Recall that xi is the input associated
with player i.

1. Each player i chooses a uniformly random element ri ∈ F.

2. Each player i computes si ← xi + ri

3. Each player i creates VSS shares of ri for each player in the quorum at input node m + i,
using the BGW scheme, and sends one share to each member of this quorum. These shares
have the property that ri can be reconstructed from them even if upto a third of them are
suppressed or misrepresented.

4. Each player i sends si to each member of the quorum at input node m+ i.

5. Quorums mapped to each input node m+i do the following: Run the VSS verification protocol
to determine whether a valid secret has been shared. Also verify, using Byzantine agreement,
that the same si has been sent to everyone. If either of these checks fails, set xi to some
preset default value, ri and its shares to zero.

9 73

Algorithm 4 Random Number Generation

This protocol is run simultaneously by each quorum associated with each gate node v ∈ G at time
t = TQF + TVSS.
The following is done by each player p ∈ v:

1. Player p ∈ v chooses uniformly at random an element rp,v ∈ F (this must be done indepen-
dently each time this algorithm is run and independently of all other randomness used to
generate shares of inputs etc.)

2. Player p creates verifiable secret shares of rp,v for each player in g and deals these shares to
all players in g (including itself).

3. Player p participates in the verification protocol for each received share. If the verification
fails, set the particular share value to zero.

4. Player p adds together all the shares (including the one it dealt to itself). This sum will be
player p’s share of the value rv.

Algorithm 5 Computation of a gate

This protocol is run simultaneously for each gate node g ∈ G, starting at time t = TQF + TVSS +
TR +(hg−1)TSMPC, where hg is the height of g. Let v1, v2, . . . vk be the children of the node g in the
graph G; and let O1, O2, . . . , Ok be the outputs of the gates associated with these children. The
algorithm maintains the invariant that for each child node vi, there is a uniformly random element
ri ∈ F and a value si = Oi + ri, such that each player in vi knows si and a unique VSS share of ri.
Also, each player at g has a VSS share of a value rg that is a uniformly random element of F. Let
fg(O1, O2, . . . , Ok) be the function computed by the gate in the circuit C associated with g.

1. Every player in the quorums g, v1, v2, . . . , vk run HEAVYWEIGHT-SMPC with the inputs
(s1, shares of r1, s2, shares of r2, . . . , sk, shares of rk, shares of rg) to compute a value sg,
where sg = fg(O1, O2, . . . , Ok) + rg. If a single player p appears in k′ > 1 of these quorums
p plays the role of k′ different players in HEAVYWEIGHT-SMPC, one for each quorum to
which p belongs.

2. The players in the quorum at g now have sg and shares of rg

Algorithm 6 Output Reconstruction

This protocol is run by all players in the quorum at the root node ρ, at time t = TQF +TVSS +TR +
hρTSMPC.

1. Reconstruct rρ from its shares using VSS.

2. Set the output o← sρ − rρ.

3. Send o to all players in the quorums numbered 2 and 3

10 74

Algorithm 7 Output Propagation

Performed by the players at each node by the players at each quorum, q other than the quorum
numbered 1, starting at time t = TQF + TVSS + TR + (hρ + 1)TSMPC wait)

1. i← quorum number of q

2. Each player p ∈ q waits until it receives values from at least a 2/3 fraction of the players in
the quorum numberedbi/2c, and sets o← the unique value that occurs as at least 2/3 of the
received values.

3. Each player p ∈ q sends o to all the players in quorums numbered 2i and 2i+ 1.

the output at the same time. This did not matter for the computations at internal gates since
the intermediate output there was masked and therefore uniformly random, and gave the players
no information about either the output or anybody’s input. However at the end of the output
reconstruction stage, players at the root actually learn the output. Thus if any single player learns
it first, then he may simply stop sending messages and the other players will not learn the output. To
overcome this difficulty, in the output reconstruction phase, instead of using the usual heavyweight
SMPC protocol, we use a rational SMPC protocol due to Abraham, Dolev, Gonen and Halpern [1,
Theorem 2(a)]. This ensures that all players at the root node learn the output simultaneously.

Finally the players at the root use Algorithm 7 in order to send the output to all n players. We
note that to run Algorithm 7 at this point is a Nash equilibrium since if all other players are running
Algorithm 7, there is no expected gain in utility for a single player by deviating from Algorithm 7.

3 Analysis

In this section, we give the proof of Theorem 1.1.
We begin by noting that the error probability in Theorem 1.1 comes entirely from the possibility

that the quorum formation algorithm of Lonergan et al. [18] may fail to result in good quorums
(see Theorem 2.1). All other components of our algorithm: the VSS and heavyweight black boxes,
Byzantine agreement and majority filtering, are all exact algorithms with no error probability. For
the remainder of this section we will assume that we are in the good event, i.e. that the players
have successfully formed n good quorums.

For each node j in the graph G, let Vj be the value of the node in the computation of f . Thus,
for input nodes, Vj is the input which has been committed to by the corresponding player (set to
a default value if the player faulted on the input commitment algorithm), while for gate nodes, Vj
is the value on the output wires of the gate associated with j in the circuit, once the inputs have
been fixed to the committed values. Also for each node j we have a mask rj ∈ F. For input nodes,
rj is the random number set by the player in the input commitment algorithm (set to zero if the
player faulted). For gate nodes, rj is the random number jointly generated by the quorum at j.
Let G′ be the set of all nodes in G which are either input nodes corresponding to good players or
gate nodes.

Lemma 1. The masks {rj}j∈G′ are fully independent and uniformly random in F.

Proof. The masks corresponding to input nodes for good players are uniformly random by choice
(see Algorithm 3). To see that the masks for the gates are uniformly random, recall that if j is

11 75

a gate node rj =
∑

i rj,i where rj,i is the value selected by player i in Algorithm 4. The players
commit to the rj,i values by sending each other VSS shares of them and then running the verification
protocol on the shares. If player i is good, rj,i is uniformly random. If player i is bad then rj,i
could be anything (including zero, if player i’s shares failed the subsequent verification). However,
once the players have committed to the values the bad players can no longer influence the sum of
the rj,i, nor can they bias the distributions of the rj,i in any way, because of the security provided
by the VSS algorithm. Since the sum of elements of F is uniformly random if at least one of them
is uniformly random, it follows that rj is uniformly random. The independence of the {rj}, j ∈ G′
follows from the fact that all players have sampled their values independently.

In the following, the “computation of a node j” will refer either 1) the input commitment
algorithm if j is an input nodes; or 2) Algorithm 5 if j is a gate node.

Lemma 2. For each node j in G, after the computation of j each player in the corresponding
quorum knows a share of a number rj . Moreover all good players in the quorum at j agree on a
value sj ∈ F such that sj − rj = Vj .

Proof. The players already have the shares of rj at the end of the random number generation
stage. We prove the claims about sj by induction. For the base case, note that for each input
node, since the corresponding quorum has at least two thirds good players, the conclusion follows
from the correctness of the VSS protocol, and the Byzantine agreement protocol used in the input
commitment algorithm.

Now let j be a gate node and suppose for all nodes j′ whose height is less than the height of j,
that all the good players at j agree on sj′ and sj′ − rj′ = Vj′ . Then the inductive hypothesis holds
for all nodes v1, v2, vk whose outputs are connected to the inputs of j. Thus, we can assume that
for all i between 1 and k, the players at node vi have shares of some value ri chosen uniformly at
random in F, and that all players in node vi know the value si = Vi + ri. In the computation at
node j, the k+ 1 quorums involved run HEAVYWEIGHT-SMPC with inputs s1, s2, . . . sk and the
shares of rj , r1, r2, . . . , rk. At the end of this protocol, all good players agree on a common value
sg. (This is by the correctness of HEAVYWEIGHT-SMPC).

To see that this common value is actually Vg + rg we note that the function computed by
HEAVYWEIGHT-SMPC consists of reconstructing rg, r1, r2 . . . , rk from their shares; inferring the
values V1, V2, . . . , Vk; computing Vg from them; and adding rg back in. (All of this will, of course, be
opaque to the players involved.) Attempts to corrupt this computation by lying about s1, s2, . . . , sk
are easily thwarted, because of the high redundancy in these as inputs. For each of these values, at
least twice as many players provide them correctly as try to lie (since each of the input quorums
have at most a third bad players). Moreover, note that the VSS used to reconstruct the masks
from the shares can tolerate up to a third of the shares being corrupted. Thus, since all quorums
are good, even if the bad players lie about their shares of the masks, they cannot change the value
of the computation. It follows that sg = Vg + rg. By induction, all the nodes in G compute the
correct masked values

Corollary 1. After the Output Reconstruction (Algorithm 6), all players at the root node know
the output.

Proof. By Lemma 2, at the end of Phase 1 of the main algorithm, all the players at the root node
know the value sρ and shares of rρ, where sρ− rρ is the output of the circuit. During Algorithm 6,
these players run the VSS secret reconstruction protocol. Since at least two thirds of them are

12 76

good, by properties of VSS, they correctly reconstruct rρ. Since all players at the root node know
the value of sρ, subtracting from it the reconstructed rρ, they all learn the correct output.

Lemma 3. At the end of the algorithm, the correct output is learned by all good players.

Proof. This follows by induction. Since quorum 1 is at the root, Corollary 1 provides a base case.
Now suppose the correct output has been learned by all the players in quorums numbered j for
all j < i. Consider the players in quorum i. During the run of the output propagation algorithm,
they will receive putative values for the output from the players at quorum bi/2c. Since at least
two thirds of the players at quorum bi/2c are good, and by induction hypothesis have learned the
correct output, it follows that at least two thirds of the values received by the players at quorum i
equal correct output. Since good players set their output to be the the unique value that occurs as
at least 2/3 of the received values, they get the correct output. By induction, all the players learn
the correct value.

We devote the rest of the section to showing that privacy of the inputs is preserved. We remark
that privacy is only guraranteed with high probability. However, as in the case of correctness, the
error arises only from the possibility that the quorum formation algorithm fails to spread the bad
players out so that less than a third of the players in any quorum are bad. Thus if we condition
on having formed n good quorums, then all the privacy claims hold with probability 1. For what
follows we will continue to condition on this good event.

As discussed in previous works (see [21]), we have no recourse against players who voluntarily
send their inputs to other players, naturally we cannot preserve the privacy of such players. In
particular, we are only concerned with preserving the privacy of good players, who perform no
actions except those specified by the protocol.

We are primarily concerned with preserving the privacy of inputs of players. However, note
that if some player’s input feeds into a multiplication gate then learning that the value in the
computation of that gate is zero, increases the Bayesian probability that the player’s input is zero,
and this is a privacy violation. Thus we are also concerned about the ability of players to learn the
value of a gate other than the root or output gate.

Recall that G′ is the set of nodes in G that are either input nodes corresponding to good players
or gate nodes.

Lemma 4. Let j be any node in G′, other than the root node, ρ. Using only messages sent to him
as part of the algorithm, no player can learn any information about the value Vj , except what is
implicit in his own input and the final output of the circuit.

Proof. We prove this for a gate node g. By Lemmas 1 and 2, the value recovered by HEAVYWEIGHT-
SMPC during the computation of g is sg = Vg + rg, where rg is a uniformly random element of F,
independent of all other randomness in the algorithm. In particular this means that sg holds no
information about Vg. If the player i is not in any of the quorums at g or its neighbors, then all
the messages he receives during the algorithm are independent of rg, and hence sg, and hence he
cannot learn anything about Vg. On the other hand, if player i is involved in the computation of g
or one of its neighbors, then he may hold a share rg as well as shares of other shares. In this case
we appeal to the privacy of HEAVYWEIGHT-SMPC and the embedded VSS algorithm to see that
although he may learn sg, he cannot learn any information about the shares of rg and hence about
rg itself. Thus, he cannot learn any information about Vg except what is implicit in his input and
the circuit output.

13 77

The proof for an input node of a good player is similar except that we will have to appeal to the
privacy of the black box VSS protocol rather than the privacy of HEAVYWEIGHT-SMPC.

We now explore a stronger notion of privacy. BGW [4] distinguish between the two kinds of
deviant behaviour among players. The bad players are players controlled by an adversary who
may indulge in arbitrary kinds of erratic behaviour to try to break the protocol in any way they
can. However BGW also consider players who are good, in the sense that they follow the protocol,
but may also send and receive messages external to the protocol, to attempt to learn whatever
additional information they can. Such players are called gossiping players. A protocol is called
t-private if no coalition of size t (including coalitions of gossiping players) can learn anything more
than what is implied by their private inputs and the circuit output. The SMPC protocol of BGW [4]
is (n/3− δ)-private for any δ > 0.

We note that our algorithm is susceptible to adaptively chosen coalitions of gossiping players.
Indeed, if all the players in a quorum at a node j gossip with each other, they can reconstruct the
corresponding random mask rj and hence the value Vj . In particular, the players in the quorum at
an input node can jointly reconstruct the corresponding input.

However, we can establish the following result, which shows that for large coalitions chosen
non-adaptively (in particular, the adversarial players) our algorithm will preserve privacy.

Lemma 5. Let S be any set of players such that for every quorum Q, S ∩ Q contains fewer
than a third of the players in Q. Let j be any node in G′. Then the coalition S cannot learn any
information about Vj that cannot be computed from their (collective) private inputs and the circuit
output.

Proof. Once again we prove this only for gate node g in G′. The proof for an input node is similar.
We know that HEAVYWEIGHT-SMPC when run at g computes sg = Vg+rg, where rg is uniform in
F and independent of all other randomness in the algorithm. As noted in the proof of Lemma 4, the
players in S who are not in the quorums at g or any of its neighbors are irrelevant to the coalition:
all of the information that they hold is completely independent of rg and sg, so they cannot assist
in uncovering any information about Vg, except what is implicit in their private inputs.

Now consider the players in the quorums at g or any of its neighbors. These players participate
in one or more of the SMPCs which involve g: the computation of g itself or the computations in
which the output of g is an input. Here we appeal to the privacy of HEAVYWEIGHT-SMPC to
see that the players cannot learn any additional information that is not implied by their inputs.
The players in S are unable to directly determine rg, since the only relevant inputs are the shares
of rg, and they do not have enough of those.

Finally, let us consider the players from S at g itself. These players also do not have enough
shares of rg to reconstruct it on their own. However, they recieve shares of each of the other shares
of rg multiple times: once during the input commitment phase of each SMPC in which g is involved.
Each time, they do not get enough shares of shares rg to reconstruct any shares of rg. However,
can they combine the shares of shares from different runs of the VSS protocol for the same secret
to gain some information? Since fresh, independent randomness was used by the dealers creating
these shares on each run, the shares from each run are independent of the other runs, and so they
do not collectively give any more information than each of the runs give separately. Since each run
of the VSS input commitment does not give the players in S enough shares to reconstruct anything,
it follows that they do not learn any information about rg. Since rg is uniformly random, so is sg
and it follows that the coalition S cannot get any extra information about Vg.

14 78

Corollary 2. The bad players cannot learn any information, except what is implied by the output
and the inputs to which they committed, about the input of any good player.

Proof. This follows immediately from Lemma 5, since each quorum consists of no more than a third
bad players.

Let q be the size of the smallest quorum. Recall that q = Θ(log n).

Corollary 3. Our algorithm is q/3-private.

Proof. Since q is the size of the smallest quorum, any set of size q/3 intersects a quorum Q in at
most a third of its members. The result follows from Lemma 5

We end with a simple analysis of the resource cost of our algorithm.

Lemma 6. If all good players follow Algorithm 1, with high probability, each players sends at most
Õ(n+mn +

√
n) messages. m is size of G

Proof. To analyze the cost of algorithm 1, we have to first analyze the cost of its sub-algorithms.
Cost of Algorithm 2 and Algorithm 3: Based on the theorem 2.1 we need to send Õ(

√
n)

messages to build the quorums. In Algorithm 3, each player must commit its secret and a random
variable using verified secret sharing between O(log n) players of a quorum (input node). This
requires sending a polylogarithmic number of messages.

Cost of Algorithm 5: Each player will participate in θ(log n) quorums. For each quorum, he
has to participate in a secure multi-party computation for θ(m+n

n) (m is number of operations in
circuit G) gates between three quorums or 3 log n players which is polylogarithmic, so this algorithm
requires sending Õ(log nn+cn) messages.

Cost of Algorithm 7: output tree, Each player should send Õ(1) messages (output message)
to the players of its children.

So the cost of the algorithm 1 is Õ(n+mn +
√
n).

4 Conclusion

We have described scalable algorithms to perform Secure Multiparty Computation in a scalable
manner. Our algorithms are scalable in the sense that they require each player to send Õ(n+mn +

√
n)

messages and perform Õ(n+mn +
√
n) computations. They tolerate an adversary that controls up

to a 1/3 − ε fraction of the players, for ε any positive constant. We have also described a variant
of this algorithm that tolerates the case where all players are rational; this variant requires each
player to send Õ(n+mn) messages and perform Õ(n+mn) computations.

Many open problems remain including the following. First, Can we design scalable algorithms
to solve SMPC in the completely asynchronous communication model? We believe this is possible
with some work. Second, Can we prove lower bounds for the communication and computation
costs for Monte Carlo SMPC? Finally, Can we implement and adapt these algorithms to make
them practical for a SMPC problem such as the one described in [5].

15 79

References

[1] I. Abraham, D. Dolev, R. Gonen, and J. Halpern. Distributed computing meets game theory:
robust mechanisms for rational secret sharing and multiparty computation. In Proceedings of
the twenty-fifth annual ACM symposium on Principles of distributed computing, pages 53–62.
ACM, 2006.

[2] B. Applebaum, Y. Ishai, and E. Kushilevitz. From secrecy to soundness: efficient verification
via secure computation. Automata, Languages and Programming, pages 152–163, 2010.

[3] Z. Beerliova and M. Hirt. Efficient multi-party computation with dispute control. In Theory
of Cryptography Conference, 2006.

[4] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computing. In Proceedings of the Twentieth ACM
Symposium on the Theory of Computing (STOC), pages 1–10, 1988.

[5] P. Bogetoft, D. Christensen, I. Damg̊ard, M. Geisler, T. Jakobsen, M. Krøigaard, J. Nielsen,
J. Nielsen, K. Nielsen, J. Pagter, et al. Secure multiparty computation goes live. Financial
Cryptography and Data Security, pages 325–343, 2009.

[6] Gabriel Bracha. An asynchronous [(n - 1)/3]-resilient consensus protocol. In PODC ’84:
Proceedings of the third annual ACM symposium on Principles of distributed computing, pages
154–162, New York, NY, USA, 1984. ACM.

[7] I. Damg̊ard and Y. Ishai. Scalable secure multiparty computation. Advances in Cryptology-
CRYPTO 2006, pages 501–520, 2006.

[8] I. Damg̊ard, Y. Ishai, M. Krøigaard, J. Nielsen, and A. Smith. Scalable multiparty computation
with nearly optimal work and resilience. Advances in Cryptology–CRYPTO 2008, pages 241–
261, 2008.

[9] I. Damg̊ard and J.B. Nielsen. Scalable and unconditionally secure multiparty computation. In
Proceedings of the 27th annual international cryptology conference on Advances in cryptology,
pages 572–590. Springer-Verlag, 2007.

[10] W. Du and M.J. Atallah. Secure multi-party computation problems and their applications: a
review and open problems. In Proceedings of the 2001 workshop on New security paradigms,
pages 13–22. ACM, 2001.

[11] K.B. Frikken. Secure multiparty computation. In Algorithms and theory of computation
handbook, pages 14–14. Chapman & Hall/CRC, 2010.

[12] O. Goldreich. Secure multi-party computation. Manuscript. Preliminary version, 1998.

[13] S. Gordon and J. Katz. Rational secret sharing, revisited. Security and Cryptography for
Networks, pages 229–241, 2006.

[14] J. Halpern and V. Teague. Rational secret sharing and multiparty computation: extended
abstract. In Proceedings of the thirty-sixth annual ACM symposium on Theory of computing,
page 632. ACM, 2004.

16 80

[15] W. Henecka, A.R. Sadeghi, T. Schneider, I. Wehrenberg, et al. Tasty: Tool for automating
secure two-party computations. In Proceedings of the 17th ACM conference on Computer and
communications security, pages 451–462. ACM, 2010.

[16] M. Hirt and U. Maurer. Robustness for free in unconditional multi-party computation. In
Advances in CryptologyCRYPTO 2001, pages 101–118. Springer, 2001.

[17] M. Hirt and J. Nielsen. Upper bounds on the communication complexity of optimally resilient
cryptographic multiparty computation. Advances in Cryptology-ASIACRYPT 2005, pages
79–99, 2005.

[18] V. King, S. Lonergan, J. Saia, and A. Trehan. Load balanced scalable byzantine agreement
through quorum building, with full information. In International Conference on Distributed
Computing and Networking (ICDCN), 2011.

[19] G. Kol and M. Naor. Games for exchanging information. In Proceedings of the 40th annual
ACM symposium on Theory of computing, pages 423–432. ACM, 2008.

[20] A. Lysyanskaya and N. Triandopoulos. Rationality and adversarial behavior in multi-party
computation. Advances in Cryptology-CRYPTO 2006, pages 180–197, 2006.

[21] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with honest
majority. In Proceedings of the twenty-first annual ACM symposium on Theory of computing,
pages 73–85. ACM, 1989.

[22] A.C. Yao. Protocols for secure computations. In Proceedings of the 23rd Annual Symposium
on Foundations of Computer Science, pages 160–164, 1982.

17 81

82

Life Won’t Wait!
(On the Slowdown of Asynchronous Automata

Networks)

Thomas P. Hayes∗ Michael Janes∗ Christopher Moore ∗

Abstract

Nakamura [1974], and later independently, Toffoli [1978] and Nehaniv [2002]
proved that any synchronous cellular automaton can be simulated by an asynchronous
cellular automaton. Their constructions effectively discard many of the updates in
order to create a limited artificial synchrony between the cells. We consider the over-
head cost of this procedure, assuming that cells update in random order. In particular,
we prove explicit upper bounds on this overhead that depend only on the maximum
degree of the network.

1 Introduction
When you think of cellular automata, what example comes to mind first? For many, the
answer would be John Conway’s Game of Life, in which the cells of a square lattice
change states from alive to dead and back according to simple rules, which nevertheless
lead to surprisingly complex behaviors over time. This CA is synchronous in the sense
that, depending on our exact implementation, the cells must either all update simultane-
ously, or at least in a more or less deterministic order; therefore, some sort of global clock
is required to ensure that none of the cells race ahead or lag behind, in terms of how many
times they have updated.

Since one of the nice features of cellular automata is the extent to which all compu-
tation is done locally, we would prefer to avoid the need for globally coordinated update

∗University of New Mexico, Department of Computer Science. email:
hayes,mjanes,moore@cs.unm.edu

1

83

timing. Indeed, we would like our computation to be almost totally independent of the
order in which cells are updated.

Fortunately, this is always possible! As first shown in 1974 by Nakamura [1], and later
independently rediscovered by Toffoli [3] and Nehaniv [2], there is a simple construction
that allows any synchronous CA to be simulated by a completely asynchronous CA, as
long as each cell eventually updates infinitely often. The elegant idea is to augment each
cell’s state space slightly, to maintain a mod-3 counter of the number of times it has
successfully updated, and to ensure that each cell only changes state when its neighbors
have all caught up to it or are one step ahead.

This construction ensures that each cell will go through the same sequence of updates
as the original synchronous CA, although each cell does this on its own schedule. For two
cells that are far apart in the network, the coupling between their update schedules may
be very loose indeed.

In this paper, we examine the overhead incurred by the above construction, in terms
of the fraction of attempted updates which must be wasted because the counters of neigh-
boring cells have fallen behind. For simplicity, we will assume that, at any given time,
the next cell to update is chosen uniformly at random. More specifically, we will think of
each cell as updating at each ring of its own independent Poisson clock, that rings with an
average rate of 1.

Our main result is the following, which partially answers open problems (1) and (2)
from [2]. For a fixed graph G, define the asymptotic slowdown, S, as the asymptotic ratio
of the elapsed time to the number of successful updates of a given cell.

Theorem 1. Let G be a graph with maximum degree ∆. Then, assuming i.i.d. Poisson
updates, the asymptotic slowdown, S, for asynchronous simulation of any synchronous
CA network on G, satisfies

S exp(1− S) ≥ 1

1 + ∆
,

or, equivalently,

S ≤ W−1

(−1

e(1 + ∆)

)
,

where W−1 denotes the lower branch of the Lambert W function.

Note that in the worst case when G is the complete graph on n vertices, the slowdown
equals the expected time for the standard Coupon Collector problem, i.e., ln(n). The
bound from Theorem 1 is approximately ln(n) + ln(ln(n)) in this case.

2

84

Lattice ∆ S ≤
1-D (or path or cycle) 2 3.289
2-D square lattice 4 3.994
3-D cubic lattice 6 4.436
2-D square lattice with diagonals (Game of Life) 8 4.757

Figure 1: Bounds to the slowdown of some lattices of interest

2 Preliminaries
We will assume throughout the paper, that the automata network is given by the graph G
on n vertices with maximum degree ∆. We will be concerned with the following random
process, which models the number of successful updates at each vertex.

Each vertex v has its own i.i.d. Poisson clock, with parameter 1. At time t, we denote
by c(v, t) the count of successful updates at v. Initially, c(v, 0) = 0. Subsequently, each
time v’s Poisson clock rings at time t, we set c(v, t) = c(v, t−) + 1 if, for all w ∈ N(v),
c(v, t−) ≤ c(w, t), and otherwise, c(v, t) = c(v, t−). Here, the shorthand t− refers to any
time before t but after the preceding ring of v’s Poisson clock.

By the asymptotic efficiency, we mean the limit

1

S
:= lim

t→∞
c(v, t)

t
,

of the number of successful updates to the expected number of total updates. We refer to
the inverse efficiency, S, as the asymptotic slowdown.

Our assumption of continuous time is really just a convenience. By standard tech-
niques, all our results immediately translate into analogous results in discrete time, as-
suming each vertex is sampled independently uniformly at random.

3 A Comparison Argument for the 1-D Case
Note that, although the successful update counts ct(v) = c(v, t) tend to infinity, if we
mod out by additive constants, there are only finitely many possibilities, for a fixed graph,
G. Indeed, in this case, the function ct − min ct is a finite Markov chain with respect to
the continuous time parameter t. It follows from general principles that there is a unique
stationary distribution that this chain approaches in the limit as t→∞.

The asymptotic slowdown is therefore a function of this stationary distribution. In-
deed, we make the following observation.

3

85

Observation 2. If, for a vertex v, the stationary probability is p that, for all w ∈ N(v),
c(v) ≤ c(w), then S = 1/p.

Note that this probability cannot depend on the vertex v, since no two vertices can
ever have their counts differ by more than n (we assume G is connected).

Unfortunately, the stationary distribution for ct (mod translation) is not so easy to
describe. In this section, we consider the special case when G is a 2n-cycle, for which a
slight variant of the Markov chain ct converges to a uniform distribution. Thereby, through
an easy comparison argument, we can prove a clean upper bound on the slowdown for
this graph.

Definition 3. Define the variant count functions c̃(v, t) by the same update rule as c(v, t),
but with the initial condition

c̃(v, 0) =

{
0 if v is even
1/2 if v is odd

Now, c̃ differs from c in that, for adjacent vertices v, w, we can never have a tie,
c̃t(w) = c̃t(v). Surprisingly, this leads to the following consequence. For convenience,
we will assume that c̃ is only defined up to translation by additive constants.

Lemma 4. The stationary distribution for 2c̃ is uniform over all functions 2c̃ : [2n]→ Z
that satisfy |c̃(i + 1)− c̃(i)| = 1, for all i, where i + 1 is computed mod 2n.

Proof. It is clear by induction that every c̃ is of the form described. A greedy construction
shows that every function of the form described is achievable starting from c̃0. All that
remains is to verify that the uniform distribution is stationary.

To see this, fix a function c̃t. Observe that the following are all equal:

• the number of distinct successor states from c̃t

• the number of distinct predecessor states to c̃t

• 1 plus the number of local maxima of c̃t

• 1 plus the number of local minima of c̃t.

This is clear, because each successful update converts a (preceding) local minimum into a
(subsequent) local maximum. And the number of maxima equals the number of minima
because ties are not allowed, so minima and maxima must alternate. Thus, under the
uniform distribution, the detailed balance condition is satisfied.

4

86

Lemma 5. The c̃t process has asymptotic slowdown ≤ 4.

Proof. Consider a sequence of 2n coin flips used to generate c̃t (heads correspond to
a change of +1/2 from the previous value, tails to a change of −1/2). Since a local
minimum corresponds to a tails followed by a heads, we expect a 1/4 fraction of these.
This is in fact the asymptotically correct value for the slowdown as n → ∞, by an
application of the central limit theorem. However, for small n, the expected number
of local minima is larger, because the cycle topology creates some negative dependence
between successive differences.

Lemma 6. The ct process on the cycle has asymptotic slowdown ≤ 4.

Proof. For any fixed order of vertex updates, the process c̃t − c̃0 will always be ≤ ct.
Whenever they are equal, the c̃t process declines to update the odd cells unless they are
strict local minima, whereas the ct process will allow updates to non-strict local min-
ima. Since successful updates always increase the counts by 1, there is no way for c̃ to
“come from behind” to pass up c. The result follows from Lemma 5 and the definition of
slowdown.

Before going on, we observe that the uniformity of the stationary distribution of c̃
allows us to prove all sorts of other nice properties of it, such as that, with high probability,
maxv c̃(v, t)−minw c̃(w, t) = O(

√
n). Unfortunately, it seems that the actual distribution

of c(v, t) is quite far from uniform. Furthermore, we do not know how to generalize the
techniques of this section to higher dimensions.

4 Proof of Theorem 1
To prove a bound on the slowdown for general graphs, we will consider the ways a missing
update at some other vertex could interfere with the counter at vertex v reaching a certain
value. Fortunately, the locality of updates in a CA network means that the count at each
cell can only be influenced by events taking place within a certain “light cone” in space-
time (Figure 2). In our context, space is measured through the shortest-path distance in
G, while local time is measured in rings of the Poisson clock at a node.

Proof of Theorem 1. Construct a “space-time” graph G′ = (V ′, E ′), where V ′ = V ×
{0, 1, 2, 3, . . . }, and E ′ consists of all directed edges ((v, t), (w, t + 1)), where either
v = w or {v, w} ∈ E. See Figure 3.

In this graph, the node (v, t) corresponds to the event that the count c(v, t′) is at least
t. The edges into (v, t) correspond to the requirements that v and all of its neighbors must
previously have reached at least t− 1.

5

87

Figure 2: A Light Cone.
[Source: Wikimedia Commons Image:World line.png]

(a) First layer of G′ (b) First two layers of G′ (c) First three layers of G′

Figure 3: A “past” light cone when G is a path or cycle.

Say that node (v, t) in G′ is occupied at time t′ if c(v, t′) ≥ t. Then, starting from
c0 = 0, each time the Poisson clock at a node u rings, we find the maximum t such that
all in-neighbors of (u, t) are occupied, and make (u, t) occupied, if it was not already.

The time it takes for a node v ∈ V to achieve ` updates equals to the time it takes
for node (v, `) to be occupied. By an easy induction, this in turn equals the sum of times
between consecutive Poisson clock rings along the slowest path from the base layer to v`.

Now, for any fixed path of length `, the probability that t time units do not suffice for
the ` Poisson clocks to ring in the correct order, equals

e−t
∑

j<`

tj

j!

6

88

Thus, by a union bound over the (1 + ∆)` paths into (v, `), the probability that (v, `) is
unoccupied at time t is at most

(1 + ∆)`e−t
∑

j≤`

tj

j!

Setting t = S` and approximating the sum by its dominant term, corresponding to j = `,
we obtain

(1 + ∆)`

eS`
(S`)`

`!
≤
(

eS(1 + ∆)

eS

)`

which tends asymptotically to zero exactly below the threshold from the Theorem state-
ment. Since the convergence is exponential in `, the approximation of the `-term sum by
its maximum cannot affect the answer. Therefore, the proof is complete.

It is worth noting that despite our inability to describe the stationary distribution, and
the huge union bound in its proof, Theorem 1 still gives a noticeably better result in the
1-D case than the comparison argument from Section 3 (namely 3.289 instead of 4).

5 Tugs-of-War on Distributions

Brain-teasers of the style “What is the value of
√

1 +
√

1 +
√

1 + . . .” are commonplace.
In this case, the answer is well-defined, namely the golden ratio, 1.618.... We can view
this as a “tug-of-war” between alternating operations: “add one” and “square root.” The
first tends to drive us upward towards its fixed point at +∞, while the second tends to
drive us down towards its fixed point at 1. In general, the question of which of two
operations will “win” in the long run can be quite interesting.

Consider the following pair of operations A2,M2, on distributions. For a distribution
X , to sample from A2X , take two independent samples from X , and average them. To
sample from M2X , take two independent samples from X , and return the larger one.
More generally, we can consider operations Ak,Mk that sample k times independently
and then average or max respectively. The M operation increases its argument. The A
operation concentrates its argument, while keeping its mean fixed. Both operations have
the same infinity of fixed points, namely all distributions supported on a single real value.
What can we say in general about which operation wins in a tug-of-war?

7

89

Figure 4: A visual representation of repeatedly maxing and averaging on a space-time
graph. Here the underlying topology is one-dimensional, and the alternating operations
are M4 and A2.

This question is motivated by an alternative approach to Theorem 1 that proved to be
less general. Basically, the idea is that in our time-space graph G′, the delay to occupy
vertex (v, 2) along a particular path equals the average of two independent Poisson clocks.
The overall delay to occupy vertex (v, 2) is the maximum of these delays, taken over the
3 different children of (v, 2). More generally, the recursive structure of the light cone
suggests a long alternating sequence of averaging and max operations. However, there
are two caveats: firstly, the max operations are not taken over independent samples (this
turns out to not really matter in our analysis), and secondly, in order to get the operations
to take the same number of arguments at each level, we take advantage of a high degree
of self-similarity for lattices, that is not present in more general graphs. See Figure 4
Although the application to slowdowns yields inferior results to Theorem 1, we feel that
this approach may be of some interest on its own.

If p is the probability that X ≤ A, where X is a random variable and A is constant,
then clearly the probability that the sum of ` independent copies of X is at most `A is at
least p`, since this is the likelihood that each Xi are at most A. The next result shows that,
for exponential moment bounds, something akin to a converse holds.

Lemma 7. If p is the best possible exponential moment bound for Pr (X ≤ A) then p` is
the best possible exponential moment bound for Pr

(∑` X ≤ `A
)

.

Proof. By Markov’s inequality we have the following exponential moment bound, for all

8

90

t > 0,

Pr (X ≥ A) = Pr
(
etX ≥ etA

)
≤ E

(
etX
)

etA

A second application of Markov’s inequality gives the following exponential bound

Pr

(∑̀
X ≥ `A

)
= Pr

(
et

′ ∑` X ≥ et
′`A
)

≤
E
(
et

′ ∑` X
)

et′`A
=

E
(
Π`et

′X
)

et′`A
=

(
E
(
et

′X
)

et′A

)`

Setting t′ = t, where t was chosen optimally, we conclude

Pr

(∑̀
X ≥ `A

)
≤ p`

Now we are ready to prove that, as long as our starting distribution doesn’t decay too
slowly, each averaging operator beats every max operator.

Lemma 8. Suppose X has a finite exponential moment, and let k, ` ≥ 2 be fixed inte-
gers. Let Ak denote the ”average k i.i.d. copies” operator, and M` denote any operator
that takes the max of ` copies, arbitrarily correlated. Then the alternating sequence
(AkM`)

iX converges to a finite real number. Indeed, let p = (1/`)1−1/k. Then if a is such
that p is an exponential moment upper bound on Pr (X ≥ a), then (AkM`)

iX converges
to a real number between E (X) and a.

Proof. It is easy to verify that, when p is an exponential moment bound on Pr (X ≥ a),
that `p is an exponential moment bound on Pr (M`X ≥ a). By Lemma 7, we know that
(`p)k is an exponential moment bound on Pr (AkM`X ≥ a). But, by choice of p, (`p)k ≤
p. By an induction argument, we can deduce that the probabilities Pr ((AkM`)

iX ≥ a)
converge exponentially to zero, and hence the distributions (AkM`)

iX converge in mea-
sure to a distribution supported on reals ≤ a. Since the operator M` increases the expec-
tation of any non-constant distribution, it follows that (AkM`)

i converges in probability
to a real constant between E (X) and a.

9

91

6 Conclusion
We have seen that, under a random vertex order, the overhead for implementing the asyn-
chronous simulation of synchronous CA’s is not only bounded as a function of the vertex
degrees, but is a rather small constant for most networks one might seriously consider
building. This can be viewed as further evidence of the practicality of such simulations,
and of the advantage of planning synchronously, but implementing asynchronously.

We conjecture that there are interesting results that remain to be proven about the
stationary distribution of the Markov chain ct. For instance, it seems plausible that the
“lag,” maxv,w c(v, t) − c(w, t) is O(

√
n) with high probability, which would tell us that,

viewed globally, the asynchronous local counters look much closer to being a distributed
global clock than we currently know.

References
[1] K. Nakamura. Asynchronous cellular automata and their computational ability. Sys-

tems, Computers, Controls 5:5 (1974) 58–66.

[2] C. L. Nehaniv. Asynchronous Automata Networks Can Emulate Any Synchronous
Automata Network International Journal of Algebra & Computation, 14:5-6 (2004),
719–739.

[3] T. Toffoli Integration of Phase-Difference Relations in Asynchronous Sequential Net-
works. In: G. Ausiello and C. Bohm, eds., Automata, Languages, and Programming
(Fifth Colloquium, Udine, July 1978), Lecture Notes in Computer Science 62, Springer
Verlag, (1978) 457–463.

10

92

93

Optimal Population Size in Island Model Genetic Algorithms

Neal Holtschulte

American Proverb: Two’s company, three’s a crowd. Genetic Algorithm Proverb:
One’s a hill climber and a thousand’s random search. Population size is one of
the key parameters affecting the success of genetic algorithms (GAs). Assuming
a limited number of fitness evaluations (the most time-intensive factor in virtually
all optimization problems), there exists an optimal population size for a genetic
algorithm for a given application. Intuitively, a GA with population size one is a hill
climber and a GA with maximal population size performs random search. Somewhere
in between lies the sweet spot. The Island Model GA divides a single population
into semi-isolated subpopulations connected by migration. On the extreme of high
migration, the subpopulations function as a single large population. On the extreme
of no migration, the subpopulations mights as well be independent runs of smaller
population size GAs. Somewhere in between lies the sweet spot. In this paper we
propose to explore the dynamics of optimal population size as a function of migration
in island model GAs.

This is more of a research proposal than anything else. I am seeking constructive
criticism.

Introduction

Genetic Algorithms (GAs) encompass a variety of search heuristics based on biolog-
ical evolution. The traditional GA applies the operators: selection, crossover, and
mutation to a population of candidate solutions in order to evolve better solutions
to a given problem. Traditionally, population size is an input parameter to the GA
and remains fixed throughout the course of search.

Modifying the population size can have a large impact on the performance of a
GA. Understanding how and why pop size has such an impact will lead to improved
performance for heuristic search algorithms and a better understanding of how they
scale. Such insights may also be broadly applicable to populations of organisms or

1

94

collections of intelligent agents such as swarm robots.

For a fixed number of evaluations there exists an optimal population size that
is problem dependent. That is, the quality of solutions discovered by a genetic
algorithm in a fixed number of fitness evaluations varies based on the population
size.

This is not surprising when one considers the extreme cases. On the small popu-
lation end, a genetic algorithm with population size one is essentially a hill climber.
Hill climbers ascend the nearest peak in the fitness landscape reachable by mutation
but are then stuck atop the peak which may be a local, but not global, optimum. On
the large population end, a genetic algorithm with population size equal to the total
number of allowed fitness evaluations merely performs random search since the GA
would only be able to initialize the population and determine the members’ fitness
values within the fitness evaluation limit. No selection, crossover, or mutation would
be performed.

In Island Model GAs, individuals are divided up into subpopulations (islands).
Individuals are then periodically exchanged between the islands (migration) over the
course of the GA run.

The parameters added by the island model include: number of islands, migra-
tion size (the number or percentage of individuals to migrate), migration interval
(number of generations between migrations), and topology, specifying which islands
individuals migrate to. Further implementation decisions such as how migrants are
selected and whether or not they replace individuals in the population to which they
migrate must also be determined.

Related work

To our knowledge there has been no extensive empirical study of optimal population
sizes in genetic algorithms across a wide variety of benchmark problems as a function
of migration. However, many others have been interested in varying the population
size for genetic algorithms.

Fernandez et. al. empirically studied population size for a fixed computational
effort on a set of genetic programming benchmarks [3]. They found that for each
benchmark there was a point of diminishing returns, after which, adding individuals
to the population had no effect or degraded the search results.

Surprisingly, they found that for island GP models with migration the optimal
population size remained constant regardless of the number of islands into which

2

95

the population was divided. For example, on one of the benchmarks, for a migra-
tion of 10% of individuals between the populations once every ten generations, two
populations of 5,000 was more effective than two populations of 10,000. And, one
population of 10,000 was more effective than one population of 15,000 (for a limited
number of fitness evaluations, of course).

Though the authors varied the migration parameters, there was no follow up
experiment to determine the effects of the different migration parameter values on
optimal population size. In the extreme case of zero migration it seems unlikely that
two populations of 5,000 or to be even more extreme, 5,000 populations of two would
be optimal. Out goal is to tease apart the relationship between migration rate and
optimal pop size in this paper.

Skolicki and De Jong [8] studied migration size and migration interval on island
GA performance. They found that moderately large migration intervals and small
migration size were optimal and that these parameter settings maintained high di-
versity, which was important for finding novel solutions. They fixed the population
size throughout their experiments as they were not interested in the interaction of
pop size with the other parameters.

A number of papers vary population size in an attempt to improve performance
but do not make the population size itself the focus of study such as [4, 5] and [9]
for multiobjective problems. [2] compares a handful of on-the-fly population resizing
mechanism for best performance.

The authors of [10] are interested in both population size and island models,
but their conclusions are general and their results are difficult to compare to the
results in this paper due to differing methodologies. For example, they used a binary
representation for all of their experiments. The binary string was converted to a
float for problems such as F5 Rastrigin’s function, which we also study, but chose to
use a floating point chromosome for. Also, in some of their other experiments they
either removed mutation to eliminate it as a complicating factor or used much larger
population sizes and effort limits (ex: pop 5000, effort limit: 300,000).

They acknowledge that using a smaller population with mutation is more standard
and follow up by performing such experiments.

3

96

Setup

The Problems

Without superstition, 13 problems are evaluated for optimal population sizes in-
cluding: F1 through F9 (table 1), Royal Road, a simple deceptive problem, a one-
dimensional optimization problem, and an NP-complete thread mapping problem.

F1 through F9 are used as benchmark problems in [6]. They are minimization
problems exhibiting every combination of the binary properties: (uni/multi)modal,
(a)symmetric, and (in)separable (with one repeat to make 9). We explored these
problems in 10 dimensions using floating point numbers. More details on these
problems can be found in table 1. The fitness landscape for F5 is shown in figure 4
and the landscape for F7 is shown in 6.

The Royal Road is a class of functions introduced in [7] to study the types of
fitness landscapes on which GA’s perform well. Our royal road is identical to the one
described in [7]. With a 64 bit chromosome, 4 tiers, and an optimal fitness of 256.

A simple, piecewise linear, deceptive problem:

f(xi) =
n∑

i=1

{
(−xi

d
+ 1)/dim, if xi < d

((xi − d) · 0.7
1−d

)/dim, otherwise

where d is the deceptiveness parameter (counterintuitively, smaller d corresponds
to greater deceptiveness) and dim is the number of dimensions. Thus the global
optimum has fitness of 1.0 and the local optimum has fitness 0.7. The chromosome
for this problem consists of an array of 10 floating point numbers.

A one-dimensional optimization problem:

f(x) = 2−2((x−0.1)/0.9)2sin(5πx)6

For this problem, 32 bit binary chromosomes are used and are translated to integers
using a gray code. Finally, the integers are divided by 232 − 1 to get a float in the
range 0 to 1.

The last problem is an NP-complete thread mapping problem in which 64 threads
are mapped one-to-one to 64 cores on a multicore processor so as to minimize the
communication cost between the cores. The cores lie in a 16x16 grid (without wrap-
ping) and communication cost is the sum of the manhattan distances between com-
municating threads. Not all communication between threads is created equally. A
fixed communication graph describes which threads communicate and the energy
cost associated with the communication.

4

97

The representation of this problem is an array containing a permutation of the
values 0 through 63. Special crossover and mutation operators are used to maintain
the invariant that a chromosome is a permutation of 0-63 without duplicates.

Genetic Algorithm Settings

Pseudocode for the genetic algorithm used in all experiments is given in figure 2.
Parameter settings used for most benchmark problems are summarized in table 3.
Genetic operators are described in more detail and exceptions are also described
below.

Tournament selection uses replacement. Meaning that an individual can be se-
lected to be included in the next generation multiple times. Two individuals compete
per tournament.

Gaussian mutation consists of replacing a gene with a value randomly selected
from a gaussian distribution with mean equal to the gene value and standard devia-
tion equal to 20% of the range (so if a gene has min 0 and max 1 then the standard
deviation is 0.2).

The mutation rate was fixed at 0.01 per gene. That is, each gene had a 1% chance
of being mutated per generation. More than one mutation could occur in the same
chromosome in a single generation though such an event is unlikely.

The crossover rate was fixed at 0.9 per individual, meaning that each individual
had a 90% chance of reproducing by crossover with another randomly selected in-
dividual per generation. Note that the number of generations varied based on the
population size due to the fact that the number of fitness evaluations (effort) was
chosen as the limiting factor.

Though these rates are relatively standard, parameter sweeps for a fixed popula-
tion size of 80 individuals were performed on F7 Schwefel’s function to verify that
the rates are optimal. The parameter sweeps confirmed this.

Exceptions:

The mutation operator for the one dimensional optimization problem and Royal
Road problem (which use binary chromosomes) flips the bit.

Mutation and crossover for the locality optimization problem must preserve the
invariant that each integer value 0 through 63 appears exactly once in each chromo-
some. So inversion is used as the mutation operator and a special order crossover
operator designed for traveling salesman-like problems (see [1]) is used for crossover.

5

98

F1 Sphere Model
unimodal symmetric separable

F (xi) =
∑n

i=1 x
2
i

−5.12 ≤ xi < 5.12
F (xi)min = F (0, 0, · · · , 0) = 0

F2 Ridge’s Function
unimodal symmetric inseparable

F (xi) =
∑n

i=1(
∑i

j=1 xj)
2

−64 ≤ xi < 64
F (xi)min = F (0, 0, · · · , 0) = 0

F3 Exponential Function
unimodal asymmetric separable

F (xi) =
∑n

i=1 e
ixi + α

α =
∑n

i=1 e
−5.12i

−5.12 ≤ xi < 5.12
F (xi)min = F (−5.12,−5.12, · · · ,−5.12) = 0

F4 Modified Double Sum
unimodal asymmetric inseparable

F (xi) =
∑n

i=1(
∑i

j=1(xj − j)2)

−10.24 ≤ xi < 10.24
F (xi)min = F (1, 2, 3, · · · , n) = 0

F5 Rastrigin’s function
multimodal symmetric separable

F (xi) = 10n+
∑n

i=1(x2i − 10cos(2πxi))
−5.12 ≤ xi < 5.12

F (xi)min = F (0, 0, · · · , 0) = 0
F6 Griewank’s function

multimodal symmetric inseparable
F (xi) = 1 + 1

4000

∑n
i=1 x

2
i −

∏n
i=1

xi√
i

−512 ≤ xi < 512
F (xi)min = F (0, 0, · · · , 0) = 0

F7 Schwefel’s function
multimodal asymmetric separable

F (xi) = 1
n

∑n
i=1(−xisin(

√
|xi|) + α

α = 418.982887
−512 ≤ xi < 512

F (xi)min = F (420.968746, 420.968746, · · · , 420.968746) = 0
F8 Rosenbrock’s saddle

multimodal asymmetric inseparable

F (xi) =
∑n−1

i=1 (100(x2i − xi+1)2 + (1− xi)2)
−2.048 ≤ xi < 2.048

F (xi)min = F (1, 1, · · · , 1) = 0
F9 Whitley’s function

multimodal asymmetric inseparable

F (xi) =
∑n

i=1

∑n
j=1(

100(x2
i−xi+1)

2+(1−xi)
2

4000 − cos(100(x2i − xi+1)2 + (1− xi)2) + 1)

−10.24 ≤ xi < 10.24
F (xi)min = F (1, 1, · · · , 1) = 0

Figure 1
6

99

#El i t i sm
best = ge tBes t Ind iv idua l (popu lat ion)

#Cul l the expanded populat ion down to pop s i z e
populat ion = tournamentSe lect ion (populat ion , pop s i z e)

ch i l d r en = []
f o r p in populat ion :

i f random < prob cro s sover :
c r o s s p with a random ind i v i du a l in populat ion
ch i l d r en . append (r e s u l t i n g s o l u t i o n s)

mutants = []
f o r p in populat ion :

mutate p
mutants . append (r e s u l t i n g s o l u t i o n)

f o r c in ch i l d r en :
mutate c
r ep l a c e c with the mutated r e s u l t

e v a l u a t e f i t n e s s (ch i l d r en)

e v a l u a t e f i t n e s s (mutants)

populat ion = populat ion + ch i l d r en + mutants + best

Figure 2

Population size: varied
Crossover Probability: 90%
Mutation Probability: 1%
Crossover Operator: One point
Mutation Operator: Gaussian

Selection: Tournament with replacement

Figure 3

7

100

Finding the Sweet Spot

The vulgar crowd values friends according to their usefulness.
- Ovid

We attempted to establish the optimal population sizes on the benchmark prob-
lems. For each problem we ran the genetic algorithm until 4000 unique fitness eval-
uations had been performed. By unique, we mean that solution, fitness pairs are
cached, and later evaluation of a cached solution did not count towards the effort
limit.

Population sizes tested include: 8, 40, 80, 120, 240, and 480 individuals. We ran
100 trials on each of the 13 benchmarks, recording the best final fitness value for
each population size and then averaging.

The intelligence of the creature known as a crowd, is the square root of the
number of people in it.
- Terry Pratchett

Surprisingly we found that for a large number of problems the smallest population
size had the best performance. We verified this by running additional experiments
with a true hill climber and found that it outperformed genetic algorithms of all
population sizes on every problem except for the Royal road, deceptive problem, and
F7 Schwefel’s function.

The best average fitness values for 100 runs across a range of population sizes
are shown for F5 Rastrigin’s function (figure 5), F7 Schwefel’s function (figure 7),
and deceptive (figure 8). The GA with the smallest population size outperformed
all others on the F5 function despite the rugged landscape as shown in figure 4. The
fitness landscape of F7 is shown in figure 6.

Hill climbers outperforming genetic algorithms on so many difficult problems flies
in the face of every intuition. Follow up experiments ferreted out the flaw in the
experimental design: the effort limit was too low. Figure 9 shows a single run of a
hill climber and multiple GA population sizes on F7 Schwefel’s function. For this
run, the effort limit was increased from 4000 to 40,000. Figure 9 shows that the
hill climber and smaller GA populations rapidly converge and successfully exploit
local optimum. The GA with population size 480 takes longer to converge, but
when it finally does so, it finds a much higher quality (lower fitness since this is a
minimization problem) than any of the other search strategies.

Clearly much larger population sizes need to be used for higher effort limits, at
least for F7 Schwefel’s function and probably for other benchmark problems as well.

8

101

Figure 4: Fitness landscape of F5 Rastrigin’s, a minimization problem.

Figure 5: Average best fitness with standard deviation for varying population sizes for F5 Rast-
rigin’s function, a minimization problem.

9

102

Figure 6: Fitness landscape of F7 Schwefel’s, a minimization problem.

Figure 7: Average best fitness with standard deviation for varying population sizes for F7 Schwe-
fel’s function, a minimization problem.

10

103

Figure 8: Average best fitness with standard deviation for varying population sizes for the decep-
tive problem, a maximization problem.

To avoid the problem of a specific effort limit creating a bias towards population sizes
that converge just prior to reaching the limit we will instead evaluate the quality of
a given population size based on how many fitness evaluations the population takes
to reach the optimal fitness value.

Population sizes that get stuck in a local optimum, never to reach optimal fitness
will be ended once the population’s diversity passes below a certain threshold and
after no improvements in best fitness are found after a specified number of fitness
evaluations. Both of these cut-off parameters will have to be carefully crafted to
prevent them from prematurely terminating actively searching GAs.

Some optimal fitness solutions are virtually impossible to find due to the high
precision of floating point numbers. For such problems, the fitness landscape will
be adjusted so that a GA gets credit for finding the optimal solution if it finds a
solution within some epsilon of the true optimal.

Finally, we will get back to the main question, “What is the relationship between
optimal population size and migration in island model genetic algorithms?”

All feedback is welcome.

Special thanks to Ben Edwards, Kenneth Letendre, and Professor Melanie Moses

11

104

Figure 9: Top: Best fitness after a given number of fitness evaluations. Bottom: Population
diversity measured by distance to average point.

12

105

REFERENCES REFERENCES

for advice on this project.

References

[1] Buthainah Fahran Al-Dulaimi and Hamza A Ali. Enhanced Traveling Salesman
Problem Solving by Genetic Algorithm Technique (TSPGA). In Proceedings
of World Academy of Science Engineering and Technology, volume 28, pages
296–302, 2008.

[2] A. E. Eiben, E. Marchiori, and V. A. Valk. Evolutionary algorithms with on-
the-fly population size adjustment. In Parallel Problem Solving from Nature
PPSN VIII, LNCS 3242, pages 41–50. Springer, 2004.

[3] Francisco Fernández, Marco Tomassini, and Leonardo Vanneschi. An empiri-
cal study of multipopulation genetic programming. Genetic Programming and
Evolvable Machines, 4:21–51, March 2003.

[4] Pedro Antonio Gutiérrez, César Hervás, and Manuel Lozano. Saw-tooth al-
gorithm guided by the variance of best individual distributions for designing
evolutionary neural networks. In Proceedings of the 8th international confer-
ence on Intelligent data engineering and automated learning, IDEAL’07, pages
1131–1140, Berlin, Heidelberg, 2007. Springer-Verlag.

[5] R.L. Haupt. Optimum population size and mutation rate for a simple real genetic
algorithm that optimizes array factors. In Antennas and Propagation Society
International Symposium, 2000. IEEE, volume 2, pages 1034 –1037 vol.2, 2000.

[6] Takuma Jumonji, Goutam Chakraborty, Hiroshi Mabuchi, and Masafumi Mat-
suhara. A novel distributed genetic algorithm implementation with variable
number of islands. In IEEE Congress on Evolutionary Computation, pages 4698–
4705, 2007.

[7] Melanie Mitchell, Stephanie Forrest, and John H. Holland. The royal road for
genetic algorithms: Fitness landscapes and ga performance. In Proceedings of
the First European Conference on Artificial Life, pages 245–254. MIT Press,
1991.

[8] Zbigniew Skolicki and Kenneth De Jong. The influence of migration sizes and
intervals on island models. In Proceedings of the 2005 conference on Genetic
and evolutionary computation, GECCO ’05, pages 1295–1302, New York, NY,
USA, 2005. ACM.

13

106

REFERENCES REFERENCES

[9] K.C. Tan, T.H. Lee, and E.F. Khor. Evolutionary algorithms with dynamic pop-
ulation size and local exploration for multiobjective optimization. Evolutionary
Computation, IEEE Transactions on, 5(6):565 –588, dec 2001.

[10] Darrell Whitley, Soraya Rana, and Robert B. Heckendorn. The island model
genetic algorithm: On separability, population size and convergence. Journal of
Computing and Information Technology, 7:33–47, 1998.

14

107

108

Implementation of an Embodied General Reinforcement Learner on a
Serial Link Manipulator

Nicholas Malone1, Brandon Rohrer2, Lydia Tapia3, Ron Lumia4 and John Wood5

Abstract— BECCA (a Brain-Emulating Cognition and Con-
trol Architecture software package) was developed in order
to perform general reinforcement learning, that is, to enable
unmodeled embodied systems operating in unstructured en-
vironments to perform unfamiliar tasks. It accomplishes this
through automatic paired feature creation and reinforcement
learning algorithms. This paper describes an implementation
of BECCA on a seven Degree of Freedom (DoF) Barrett Whole
Arm Manipulator (WAM) undergoing a series of experiments
designed to test the reinforcement learner’s ability to adapt
to the WAM hardware. In the experiments, the following is
demonstrated, 1) learning to transition the WAM between
states, 2) learning to perform at near optimal levels on one, two
and three dimensional navigation tasks, 3) applying learning
in simulation to hardware performance, 4) learning under
inconsistent, human-generated reward, and 5) combining the
reinforcement learner with Probabilistic Roadmap Methods
(PRM) to improve scalability. The goal of the paper is to
demonstrate both the scalability of the BECCA reinforcement
learning approach using different formulations of the state
space and to show the approach in this paper operating on
complex physical hardware.

I. INTRODUCTION

Robotic path planning and control is a challenging task
and often requires intimate knowledge of a specific platform
to build a path planner for it. Reinforcement learning is
an alternative approach to hand designing a path planner.
There are many different reinforcement learning techniques
but they all have the machine learn how to find a path which
maximizes a metric called the reward by exploring state-
action sequences [1], [11], [5], [4], [3], [2], [12]. Abtahi
et al. in [1] describe a reinforcement learning technique
which combines deep belief networks with a function-
based reinforcement learner. [11] combines a traditional
reinforcement learning algorithm with additional input from
a human trainer. The work in [5] deals with combining the
approximation value function approach with the discretiza-
tion approach to reinforcement learning. Cuccu’s work in
[4] uses a type of reinforcement learning for artificial neural

This work was supported by Sandia National Laboratories PO# 1074659
1N. Malone is a student at the University of New Mexico

namlone@cs.unm.edu
2B. Rohrer is with Sandia National Laboratories

brrohre@sandia.gov
3L. Tapia is with the Faculty of Computer Science, University of New

Mexico ltapia@cs.unm.edu
4R. Lumia is with the Faculty of Mechanical Engineering, University of

New Mexico lumia@unm.edu
5J. Wood is with the Faculty of Mechanical Engineering, University of

New Mexico jw@unm.edu

networks operating on the mountain-car benchmark. Clouse’s
work on reinforcement learning in [3] is about combining
a traditional reinforcement learner with apprentice learning
or mimic learning. Finally, the work of Legenstein et al.
discuses a technique for handling high dimensional inputs
[12].

The Barrett Whole Arm Manipulator (WAM), as seen in
Fig 1, is a 7 DoF robotic system. Instead of handcrafting a
control and path planning algorithm for the WAM, machine
learning techniques can be used to learn how to control and
path plan the WAM. BECCA is a general reinforcement
learner designed to learn how to control arbitrary robotic
platforms. In this paper BECCA is implemented on subsets
of the WAM platforms DoFs. The goal of this work is to
first provide a proof of concept on a physical platform and
then to investigate the scalability of different approaches.The
reinforcement learner is combined with the Probabilistic
Roadmap Methods (PRMs) in order to improve scalability.

Fig. 1. Whole Arm Manipulator (WAM).

II. RELATED WORK

Creating a general learning machine has been one of the
grand goals of artificial intelligence (AI) since the field was
born. Efforts to achieve this goal may be divided into two
categories. The first category uses a depth first approach,
solving problems that are complex, yet limited in scope, such
as playing chess. The assumption underlying these efforts is
that an effective solution to one problem may eventually be
generalized to solve a broad set of problems. The second
category emphasizes breadth over depth, solving large classes
of simple problems. The assumption underlying these efforts
is that a general solution to simple problems may be scaled

109

up to address more complex ones. An example of the first
category would be a master level chess playing agent, while
an example of the second category would be an agent with
the capabilities of an ant worker. The work described here
falls into the second category, focusing on breadth. The moti-
vating goal for this work is to find a solution to natural world
interaction, the problem of navigating, manipulating, and
interacting with arbitrary physical environments to achieve
arbitrary goals. In this context, environment refers both to the
physical embodiment of the agent and to its surroundings,
which may include humans and other embodied agents.
The agent design presented here is loosely based on the
structure and function of the human brain and is referred to
optimistically as a Brain-Emulating Cognition and Control
Architecture (BECCA) [16], [17].

A Brain-Emulating Cognition and Control Architecture
agent interacts with the world by taking in actions, making
observations, and receiving reward (see Fig. 2). Formulated
in this way, natural world interaction is a general rein-
forcement learning problem, [19] and BECCA is a potential
solution. Specifically, at each discrete time step, it performs
three functions:

1) reads in an observation, a vector o ∈ <m | 0 ≤ oi ≤ 1.
2) receives a reward, a scalar r ∈ < | −∞ ≤ r ≤ ∞.
3) outputs an action, a vector a ∈ <n | 0 ≤ a ≤ 1.
Because BECCA is intended for use in a wide variety of

environments and tasks, it can make very few assumptions
about the environments beforehand. Although it is a model-
based learner, it must learn an appropriate model through
experience. There are two key algorithms to do this: an
unsupervised feature creation algorithm and a tabular model
construction algorithm.

Fig. 2. At each timestep, the BECCA agent completes one iteration of
the sensing-learning-planning-acting loop, consisting of six major steps: 1)
Reading in observations and reward, 2) Updating feature set, 3) Expressing
observations in terms of features, 4) Predicting likely outcomes based on
an internal model, 5) Selecting an action based on the expected reward of
action options, and 6) Updating the model.

The feature creator component identifies repeated patterns
in the input vector [15]. It then groups loosely correlated
elements of the input vector. The groups are treated as
subspaces and unit vectors of these subspaces are features
[15]. New inputs are also projected onto existing features
and the single feature in each group which has the greatest
response is turned on while all others in that group are turned
off [14] [15] [18].

The reinforcement learning component receives feature

activity, reward, and direct input from the environment. Each
feature is associated with an approximate reward. It keeps
track of recent actions and recent features in working mem-
ory which is then used to update the model. The actual model
is a table of cause-effect pairs. The cause is the working
memory and the effect is the current feature. Considering
this in standard reinforcement learning language, the model
can be thought of as a sequence of state-action pairs. Entries
in the table which are rarely observed are deleted from the
model [14] [15] [18].

To chose an action the reinforcement learner compares
the current working memory to the entries in the model and
selects the entry which both matches the current working
memory and which has the highest recorded reward. With a
set probability, an exploratory action is chosen instead [14]
[15] [18].

III. METHODS

The methods section first describes the WAM hardware,
then the interface with the WAM, and finally, how a general
task is built for BECCA to utilize the WAM interface.
The reinforcement learner is designed for general purpose
learning on any platform but there is still a small amount
of configuration needed to allow it to interface with a
specific hardware. A task is a framework for incorporating
the specific requirements for any hardware. A task is a
translator for the action vector produced by BECCA to the
hardware, and a translator for the sensory information into
an input vector for the reinforcement learning approach. The
task also is responsible for calculating the reward for any
given state.

A. Robotic Hardware

The Barrett Whole Arm Manipulator (WAM) platform
used in the experiments is a seven degree of freedom (DoF)
robotic arm as seen in Fig. 1. It is a cable driven system
controlled with joint position encoders and torque sensors.
For the experiments in this paper, the WAM has been
connected to a GE Intelligent Platforms reflective memory
network in a spoke design that allows multiple computers to
share memory at speeds ranging from 43 MB/s to 170 MB/s.
The reflective memory network allows remote computers
to handle the planning, learning processing, and sensor
processing, while leaving a small and fast computer on-board
the WAM to handle simple motion control.

B. WAM Interface

The WAM is connected to a xPC Target Kernel running
Matlab Simulink 7.7.0 R2008b [13]. The controller for the
WAM is written in Simulink and interfaces with remote
computers via the reflective memory network. The Simulink
code responsible for directly issuing commands to the WAM,
henceforth the WAM controller, receives a command vector
by reading a specific block of reflective memory. The com-
mand vector is a length seven vector containing the desired
joint angles in radians of each for the seven WAM joints.

The WAM controller, upon receiving a command vector,
places the command vector into a buffer, which only stores

110

one move. The command vector is first sanitized so that
each entry is within the WAM’s joint limits. If the WAM
is not executing a move, it compares its current location to
the command vector buffer. If the command vector buffer
is sufficiently different from the current location, the WAM
controller computes a linear interpolation in joint space
between the two joint angles and executes the path within the
allowable WAM workspace. However, the velocity follows
a fifth-order smooth polynomial as seen in Fig 3, and is
used both for safety and for mimicking biological motion
[6]. Slow beginnings and endings to moves provide safe
joint torques. In the current architecture a move cannot be
interrupted.

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3
Velocity vs Time

Time (s)

V
el

oc
ity

(m
/s

)

Fig. 3. Example Velocity Profile for a Single Joint.

C. Tasks

BECCA is designed to be a reinforcement learner for
general robotic applications. Thus, there is a simple interface
between the external world and its internal representation of
the world. At the simplest level, it takes a vector of inputs and
transmits a vector for outputs. The structure of the inputs and
outputs is intended to be irrelevant to BECCA and so it must
learn the structure of both. Therefore, a designer must define
an input vector and an action (output) vector as well as a
reward structure for each task. The task must also define how
to interpret an action vector, and how to translate a sensory
information into an input vector. The manner in which the
task interprets outputs and delivers inputs to BECCA is
completely at the discretion of the task designer. Algorithm
1 is a pseudocode example of an interpretation of an action
vector, for a 1 DoF task.

For the 1 DoF task the joint space is partitioned into
equally spaced bins and BECCA is constrained to move
between bins. Algorithm 1 calculates the direction and
number of bins the action vector specifies to move. Line
1 first calculates the offset move for a given action vector.
For this task the action vector is treated much like a stepper
motor move. The vector has 8 components that are either 0
or 1. Vector component 1 corresponds to a move of one bin
to the right while component 2 corresponds to a move of
one bin to the left. Components 3 and 4 represent a move
of two to the right or two to the left and so on for the rest
of the components. A total move is calculated by summing
together all of the components to determine how many bins
to move and in which direction. Lines 2 and 3 calculate

Algorithm 1 interpretActionVector(action)
1: move← 1 ∗ action[1]− 1 ∗ action[2]

+2 ∗ action[3]− 2 ∗ action[4]
+3 ∗ action[5]− 3 ∗ action[6]
+4 ∗ action[7]− 4 ∗ action[8]

2: currentPos← getJointPositionFromWam()
3: actualMove← (move ∗ 0.3142 + currentPos[4])
4: if actualMove < jointMinLimit then
5: actualMove← jointMinLimit
6: end if
7: if actualMove > jointMaxLimit then
8: actualMove← jointMaxLimit
9: end if

10: return actualMove

the current position of the arm and then calculate the joint
angle that the arm should be at given the desired bin move.
Lines 4 through 9 then sanitize the actual move to be within
the joint limit constraints. It is important to note that at
initialization, BECCA does not know the transition function
between states, where a state corresponds to a particular input
vector, and an input vector is a vector of all zeros except for
the bin the WAM is currently in is a 1. It must learn what
each action vector does in a given state.

A task is a specific instance of a problem for BECCA to
learn. Algorithm 2 outlines the basic steps in a simple task.
In line 1 the action vector is retrieved from BECCA and then
interpreted by the task in line 2 by calling Algorithm 1. In
line 4 the move is sent to the WAM via the WAM interface
discussed in section III.B. An input vector is then generated
given the new state and sent to the reinforcement learner
in lines 5 through 10. Finally, a reward is calculated based
on the new state by lines 11 through 17. In the Algorithm
2 example, there is a single reward bin, which is given a
reward of +10, the edge bins are punished by a reward of
-10 and any other bin is punished by a reward of -1.

IV. EXPERIMENTS

The experiments section starts with a simple binning
formulation for a 1-DoF pointing task. It then progresses
to a 2-DoF pointing task to demonstrate the scalability
issues reinforcement learners have with specific problem
formulations. The manual training section then demonstrates
that BECCA can be used in a real time human-trained
environment for simple tasks. This is important since in order
for learning robots to be useful they will need to be trained by
human operators in specific tasks. Finally, the PRM section
proposes a solution to the scaling issues presented by the
simple binning formulation.

A. 1-DoF Task

The first experiment is a 1-DoF task. On the WAM joint
4, the elbow joint, is used for the single DoF. Joint 4 has a
range of motion from 0 radians to π radians. For simplicity,
the joint space is divided into 10 equally spaced bins, such
that any angle between 0 and 0.3142 radians is bin 1, any

111

Algorithm 2 Task Loop
1: loop
2: action← BECCA.getAction
3: move← interpretActionV ector(action)
4: sendMoveToWAM(move)
5: waitForMoveToF inish()
6: currentPos← getJointPositionFromWam()
7: bin← findBin(currentPos, numBins)
8: binV ector = [0, 0, 0, 0, 0, 0, 0, . . . , 0]
9: binV ector[bin]← 1

10: BECCA.inputV ector = binV ector
11: if bin == rewardBin then
12: BECCA.reward← 10
13: else if isEdgeBin(bin) then
14: BECCA.reward← −10
15: else
16: BECCA.reward← −1
17: end if
18: end loop

angle greater than 0.3142 and less than 0.6284 radians is
in bin 2 and so on until π radians. The binned joint space
becomes the state space and is used as the input vector to
BECCA. The input vector to BECCA is then of length 10,
and has zeros in every position except for the current bin. For
example if the WAM’s joint 4 is at angle 0.1125 radians then
it is in bin 1, and the input vector is: [1,0,0,0,0,0,0,0,0,0,0].

The action vector sent by BECCA for the 1-DoF task is a
length 8 vector and each entry in the vector is constrained to
be either a 0 or a 1. For the 1-DoF task, the action vector is
interpreted by Algorithm 1. The action vector for the 1-DoF
task was chosen to be a simple design without significant
regard for how well the reinforcement learner would handle
it. Algorithm 1, shows how the action vector for the 1-DoF
task is interpreted. Once the action vector and the input
vector operations have been specified they can be used in the
1-DoF task. Lastly, a reward function must be specified. In
this experiment, the basic algorithm (Algorithm 2) is altered
so that bin 5, the center bin, is given a reward of +10, and
every other bin is given a reward of -1 except the edge bins
1 and 10 which are given a -10 reward.

BECCA is first trained in simulation and then ported to
hardware partially through the experiment. Each data point
is the cumulative reward the reinforcement learner receives
after 100 iterations (100 iterations is a block).

Fig. 4 is an average of 10 runs on the 1-DoF task. BECCA
was first trained in simulation and then ported to hardwar
at block 25. Averaging the runs slightly smoothes out the
learning curve for BECCA and better illustrates the climb to
optimal performance at 700 units of reward. Fig. 4 is a proof
of concept for interfacing with a specific task. It appears that
BECCA does poorly, reaching only approximately 700 units
of rewards, however there is a 30 percent exploration rate at
minimum, thus on the simple 1-DoF task 700 units of reward
is approximately optimal due to the -10 edge punishment and
the fact that some exploratory actions have no effect. Here

optimal is receiving maximal reward.
It should be noted that even on the relatively small state

space of 10 bins and an action vector of length 8, BECCA
still takes on average 3,000 iterations to converge on optimal
behavior. 3,000 iterations with an average move time of
2 seconds on the WAM is approximately 1.7 hours of
operation time on the WAM, which presents a problem for
larger state/action spaces. The design of the WAM controller
interface allows for BECCA to be run in simulation mode
until convergence and then be connected to the WAM. A
simulation of the WAM is not a perfect matching to the
actual hardware due to idiosyncrasy of the hardware differing
minutely from the theoretical. However, BECCA is a general
learning program and is able to compensate for the difference
between simulation and real hardware after exposure to
the hardware. Thus, the experiments can be safely run in
simulation, which operates significantly faster than hardware
and reduces the time it takes BECCA to learn a task. An
iteration in simulation takes a fraction of second, while in
hardware a single iteration takes approximately 2 seconds.
In Fig. 4 the structures, which have been learned, are ported
to the WAM hardware at block 25.

0 5 10 15 20 25 30
−200

−100

0

100

200

300

400

500

600

700

800

Bocks of 100 Iterations

C
um

ul
at

iv
e

R
ew

ar
d

pe
r

B
lo

ck

Fig. 4. Average of 10 1 DoF Task Learning Curves. The black vertical
bar shows the transition from simulation to the WAM hardware.

B. Manual Training

BECCA is also capable of being trained manually. In the
current version, version 0.3.9, manual training can be tedious
given the number of iterations required for convergence.
To compensate for the convergence time, a very simple 3
bin task with an action vector of length 4 is used during
the manual training experiment. A trainer can reward or
punish BECCA at any time, however only the last reward
or punishment is registered per move, where a move is a
single loop through Algorithm 2. Thus, this task differs from
the normal training task in that the reward function is at the
discretion of the trainer. The trainer can choose to change
how BECCA is rewarded at will. Standard training tasks
have a reward function which is coded directly into the task.
The 1-DoF manual training task is running on the WAM
robot without simulation bootstrap training. The trainer only
rewards BECCA when joint 4 is in the middle bin, which
places the elbow joint at π/2.

112

Fig. 5 shows the results of a typical manual training task.
In Fig. 5 BECCA is only rewarded for being in state 2.
The trainer sometimes intentionally fails to give reward for
being in state 2, to demonstrate that BECCA can handle
inconsistent rewards which it will likely receive in practice
from a human trainer. The trainer never gives punishment
during the experiment. Fig. 5 is slightly different from the
previous cumulative reward figure in that the block size is
only 5 iterations, and the reward is at most +10 per iteration
making the maximum 50 units of reward. The cumulative
reward seen in Fig. 5 shows that BECCA has converged
at around 50 iterations (block 10 on the independent axis).
The rapidity of convergence is due to the simplicity of the
task, but it demonstrates that BECCA can learn a task with
inconstant reward and can be trained by hand.

Fig. 6 shows the percentage of time spent in each bin. The
blue vertical striped bar shows the overall percentage of time
BECCA has spent in a bin, while the red horizontal striped
bar shows the percentage of time spent in a bin for the last
5 iterations. On average 70 percent of its time is spent in
bin 2, which is the only bin it receives reward in. 70 percent
is optimal due to a 30 percent exploration rate. The red bar
being at 100 percent in bin 2 indicates that BECCA chose
to spend all of its time in bin 2 over the last 5 iterations.
The results of both Fig. 5 and Fig. 6 show that BECCA is
correctly learning to select bin 2 over the other two bins
during the manual training task.

0 2 4 6 8 10 12 14 16
0

5

10

15

20

25

30

35

40

45

50

Iterations in Blocks of 5

C
um

ul
at

iv
e

R
ew

ar
d

pe
r

B
lo

ck

Fig. 5. Manual Training 1 DoF Task Learning Curve.

C. 2-DoF Task

The previous two experiments have been on a single
degree of freedom and have had relatively small and simple
state spaces and action vectors. The 2-DoF task has an
exponentially larger state space than the 1-DoF task. The
2 degree of freedom task uses joint 2 and joint 4. Joint 2 has
a range of motion from -1.99 radians to 1.99 radians. Both
joint 2 and joint 4 are divided into 10 bins each, meaning that
the state space is now a 10 by 10 matrix of states. The action
vector must also be enlarged to 16. The first 8 components
control joint 2 and the second 8 components control joint
4 in the same way as the first 1-DoF task. Thus the state
spaces from the 1-DoF and 2-DoF task can be compared.
The state space for the 1-DoF task had 10 states with an

Fig. 6. Percentage of Time BECCA Spends in a Bin. This graph
corresponds to block 15 in Fig 5. The red horizontal striped bar shows that
BECCA chose to spend every step in bin 2, and thus received maximum
reward for that block.

action vector of length 8, resulting in a state/action space
of 10 ∗ 28 because BECCA can send an arbitrary bit string
of length 8. The state space for the 2-DoF task has 100
states and an action vector of length 16 giving a state/action
space of 100 ∗ 216. The reward function has been modified
to Reward = rJ2(Joint2Bin) + rJ4(Joint4Bin) where
rJ2 and rJ4 are defined as:

rJ2(x) =

10 if x = 5

−10 if x = 0 ∨ x = 10

−1 otherwise

rJ4(x) =

10 if x = 5

−10 if x = 0 ∨ x = 10

−1 otherwise

In rJ2 and rJ4 bin 5 corresponds to the middle bin, and
bins 0 and 10 correspond to the first and last bin, so the robot
will be in a right angle when it is in the correct location.

Fig. 7 shows the cumulative reward for the 2-DoF task.
After approximately 5000 iterations the reward stabilizes to
an oscillation between 500 and 1500 units of reward. Based
on the reward structure the maximum reward is 2000 per
block, which indicates that the 2-DoF task is performing
under optimum. The reason for the underperformance can
be better seen by looking at Fig. 8 and Fig. 9, which show
the percentage of time each joint spends in a particular bin.
Fig. 8 indicates that BECCA spends the majority of its time
in bin 5 for joint 2, but Fig. 9 indicates that not enough
time is spent in bin 5 for joint 4. The underperformance
stems from not fully learning the large state/action space.
If BECCA correctly finds joint 2 it still must find joint 4
simultaneously in order to locate the optimal state. An action
of length 16 has 216 possible bit vectors, and there are 100
states, thus BECCA would have to visit 100∗216 state action
combinations to fully explore the environment.

D. Probabilistic Roadmap Methods and BECCA

PRMs are a path planning technique used with robots with
high DoFs to reduce the complexity searching in a high-
dimensional and continuous space of possible conformations.

113

0 50 100 150 200 250
−1500

−1000

−500

0

500

1000

1500

2000

Iterations in Blocks of 100

C
um

ul
at

iv
e

R
ew

ar
d

pe
r

B
lo

ck

Fig. 7. 2-DoF Task Cumulative Reward.

Fig. 8. 2-DoF Task Percentage of Time Spent in Each Bin for Joint 2. The
blue vertical striped bar shows the cumulative percentage of time spent in
a bin, while the red horizontal striped bar shows percentage of time spent
in a bin during the last block.

They have been applied to a variety of complex robot
types including manipulators [9], walking robots [8], and
nonholonomic robots [7]. PRMs tackle the planning problem
by working in conformation space (C-space) rather than the
workspace. In regards to joints, this means that each DoF of
a joint is mapped to a single dimension in C-space. Then,
the path planning problem is reduced to finding a sequence
of feasible states in this conformation space, those in C-free.

PRMs work by building a roadmap of possible feasible
motions in C-free [10]. They do this by randomly selecting
points in C-free. Then, nearby points are connected by
simple connection methods. Nearby can be defined by low-
cost Euclidean distance calculation to identify the k nearest
neighbors. Connection can be achieved using straight-line
interpolation.

The goal of incorporating PRMs was to help guide the
searching. For example, BECCA was successful at automat-
ically searching the large search space with 2 joints, however,
it struggled. This would be magnified with a 3 joint problem
moving from 100 states to 1,000 states, which would increase
the complexity at least by a factor of 10. Incorporating PRMs
allowed us to reduce the state space for 3-DoF tasks to the
number of nodes in the roadmap. For the results shown, the
state space has 50 nodes, but the number of nodes can be
adjusted.

For the 3-DoF task, joints 1, 2, and 3, are mapped into a 3

Fig. 9. 2-DoF Task Percentage of Time Spent in Each Bin for Joint 4. The
blue vertical striped bar shows the cumulative percentage of time spent in
a bin, while the red horizontal striped bar shows percentage of time spent
in a bin during the last block.

dimensional C-space. Then, fifty random points are sampled
in the C-space using a uniform distribution. The fifty points
are then connected probabilistically based on the distance
between the points, such that closer points have a higher
probability of being connected. Fig. 10 shows an example of
a PRM generated for the 3-DoF task.

Fig. 11 shows the cumulative reward per block for BECCA
operating on the 3-DoF PRM task. The maximum reward that
can be receive per iteration is 100, making the maximum
per block 10,000 units of reward. The reward structure for
the PRM task assigns a reward of 100 to the target node, a
reward of 10 to all neighbors of the target node, and a reward
of 1 to the neighbors of the neighbors. Every other node is
given a reward of 0. The goal state is chosen at random
from the 50 points, without loss of generality. BECCA’s
action vector is interpreted as which neighbor to transition
to. Each node in the PRM is numbered and the input vector
is 50 long, with each entry in the vector corresponding to a
particular numbered node. All values in the vector are set to
0 except for the current node’s number is set to 1. The PRM
covers a wide area in the WAM’s range of motion, but only
takes 900 iterations to reach a very high cumulative reward.
900 iterations is significantly fewer than the 5,000 iterations
required for the 2-DoF task to converge, which indicates that
PRM’s are very effective at reducing the convergence time
of BECCA.

To better see the convergence speed of the PRM method
compared to the engineering solution presented in the first
3 experiments, another experiment was performed as seen
in Fig. 12. In this last experiment, two 3-DoF tasks are
created, a simple and a hard task, using the same method
as the 2-DoF task except a third joint is added. The simple
3-DoF task has 3 bins per joint, and an action vector of
length 12. The hard 3-DoF task has 4 bins per joint, and
an action vector of length 18. Both simple and hard tasks
are rewarded by +(100/3) for being in bin 2 and receive
0 reward for being in any other bin. The reward structure
has been altered so that the simple and hard tasks have a
reward structure more similar to the PRM task. The altered
reward structure has a maximum reward of 100 per iteration

114

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−1.5

−1

−0.5

0

0.5

1

1.5
0

0.5

1

1.5

2

2.5

3

3.5

J1
J2

J4

Fig. 10. Probabilistic Road Map for a 3-DoF WAM Task. Vertices are pos-
sible configurations. Edges are possible transitions between configurations.

1 2 3 4 5 6 7 8 9
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Iterations in Blocks of 100

C
um

ul
at

iv
e

R
ew

ar
d

pe
r

B
lo

ck

Fig. 11. PRM Cumulative Reward for a 3-DoF Task.

and thus 10,000 per block, just like the PRM experiment.
The simple task has 27 possible states. The hard task has 64
possible states and the PRM has 50 states. Thus, the simple
and hard tasks bound the PRM in number of states. However,
it is important to note that the simple and hard tasks have
larger action vectors than the PRM due to how they were
engineered. Fig. 12 shows that the PRM method converges
much faster than either the simple 3-DoF or hard 3-DoF
task. The PRM method has reached the optimal of 7,000
units of reward by around 1,000 iterations while, the simple
3-DoF task has only reached approximately 6,000 units of
reward by 7,000 iterations. The 3-DoF hard task has only
reached approximately 3,500 by 7,000 iterations. Thus we
can see that the PRM task converges much faster than either
the simple or hard task.

To further show the scalability of the PRM approach we
produce Fig. 13 which plots the average reward of 10 runs
for each DoF from 1 to 7. This graph confirms that PRM-
BECCA is unaffected by the Degrees of Freedom with a
constant number of nodes. However, there is a problem with
just testing the Degrees of Freedom and holding the number
of nodes constant. By holding the number of nodes in the
PRM constant, the density of nodes decreases as the DoF
increases. Thus we must also test to see how BECCA scales
with the number of nodes.

In the following experiments we vary the number of nodes
from 60 to 200 in steps of 20, and the k neighbor parameter is

0 10 20 30 40 50 60 70
−1000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Blocks of 100

C
um

la
tiv

e
R

ew
ar

d

PRM

3DOF Hard

3DOF Simple

Fig. 12. Cumulative reward for PRM, 3-DoF Simple, and 3-DoF Hard
tasks. The 3-DoF simple task has 3 bins per joint, giving a state space of
33. The 3-DoF hard task has 4 bins per and an action vector length of 18,
giving a state space of 43. The PRM task has 50 points which correspond
to 50 states.

0 5 10 15 20 25 30
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Blocks of 100

R
ew

ar
d

7−DoF
6−DoF
5−Dof
4−DoF
3−DoF
2−DoF
1−DoF

Fig. 13. Cumulative reward per block of 1-DoF to 7-DoF with
PRMs.

set to 4. Since the previous experiment showed that BECCA
would converge at the same number of steps regardless of
DoF we chose to do this experiment with 3 DoF. Again 10
runs are done for each number of nodes and the results are
averaged. Fig. 14 shows the average cumulative reward for
each test. It shows us that BECCA also converges at the same
time regardless of number of nodes in the graph. Fig. 14 is
practically indistinguishable from Fig. 13, thus showing that
BECCA converges at the same rate regardless of DoF and
regardless of the number of nodes in the PRM.

0 5 10 15 20 25 30
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Blocks of 100

R
ew

ar
d

60 Nodes
80 Nodes
100 Nodes
120 Nodes
140 Nodes
160 Nodes
180 Nodes
200 Nodes

Fig. 14. Reward per Block for Varying Number of Nodes.

It is important to note that this is a novel use of PRMs. In
previous work, they have been used to plan the motions for
complex robot systems [7], [8], [9]. However, by integrating
PRMs with BECCA, we are able to demonstrate automatic
learning of controls to achieve motion in complex problems.

V. CONCLUSIONS

BECCA is intended to be a general reinforcement learning
operating in unmodeled environments. The experiments in
this paper demonstrate BECCA running on a single WAM

115

platform under different constraints. BECCA performs very
well on small state/action spaces as seen in the 1-DoF task,
but struggles under larger state/action spaces as seen in the
2-DoF task. Large state/action spaces are a problem for many
reinforcement learning algorithms. The experiments in this
paper show that BECCA can learn how to operate a complex
machine such as the WAM in state/action spaces with varying
complexity. However, the experiments also show that the
complexity of those environments has a large impact on the
convergence time of BECCA. The hope is that BECCA can
learn any unconstrained environment, but the complexity of
the environment is such a large factor that realistically the
state/action space of the environment has to be carefully
engineered to insure feasible convergence times.

The PRM formulation of the problem demonstrates that
careful construction of the state space allows the reinforce-
ment learner to overcome the scalability issues. BECCA
scales very nicely from 1 to 7 DoF and under varying num-
bers of nodes in the roadmap using the PRM formulation.
However, it fails to scale using the binning formulation.
Therefore, PRMs work to improve the efficiency of the
BECCA reinforcement learning agent.

VI. ACKNOWLEDGMENTS

This work was supported by Sandia National Laboratories
PO# 1074659. Tapia supported in part by the National
Institutes of Health (NIH) Grant P20RR018754 to the Center
for Evolutionary and Theoretical Immunology. We also thank
Dr. Dave Vick for his help with the robotic hardware setup.

REFERENCES

[1] ABTAHI, F., AND FASEL, I. Deep belief nets as function approxima-
tors for reinforcement learning, 2011.

[2] ARGALL, B. D., CHERNOVA, S., VELOSO, M., AND BROWNING, B.
A survey of robot learning from demonstration. Robot. Auton. Syst.
57 (May 2009), 469–483.

[3] CLOUSE, J. On integrating apprentice learning and reinforcement
learning. Tech. rep., University of Massachusetts, Amherst, MA, USA,
1997.

[4] CUCCU, G., L. M.-S. J., AND GOMEZ, F. Intrinsically motivated
neuroevolution for vision-based reinforcement learnin. International
Conference on Development and Learning and Epigenetic Robotics
(August 2011).

[5] FERNÁNDEZ, F., AND BORRAJO, D. Two steps reinforcement learn-
ing. Int. J. Intell. Syst. 23 (February 2008), 213–245.

[6] FLASH, T., AND HOGANS, N. The coordination of arm movements:
An experimentally confirmed mathematical model. Journal of neuro-
science 5 (1985), 1688–1703.

[7] HASHIM, S., AND LU, T.-F. A new strategy in dynamic time-
dependent motion planing for nonholonomic mobile robots. In
Proceedings of the 2009 international conference on Robotics and
biomimetics (Piscataway, NJ, USA, 2009), ROBIO’09, IEEE Press,
pp. 1692–1697.

[8] HAUSER, K., BRETL, T., CLAUDE LATOMBE, J., AND WILCOX,
B. Motion planning for a sixlegged lunar robot. In The Seventh
International Workshop on the Algorithmic Foundations of Robotics
(2006), pp. 16–18.

[9] JUNG-JUN PARK, J.-H. K., AND SONG, J.-B. Path planning for a
robot manipulator based on probabilistic roadmap and reinforcement
learning. In International Journal of Control, Automation, and Systems
(2008), pp. 674–680.

[10] KAVRAKI, L., SVESTKA, P., CLAUDE LATOMBE, J., AND OVER-
MARS, M. Probabilistic roadmaps for path planning in high-
dimensional configuration spaces. In IEEE International Conference
on Robotics and Automation (1996), pp. 566–580.

[11] KNOX, W. B., AND STONE, P. Augmenting reinforcement learning
with human feedback. In ICML 2011 Workshop on New Developments
in Imitation Learning (July 2011).

[12] LEGENSTEIN, R., WILBERT, N., AND WISKOTT, L. Reinforcement
learning on slow features of high-dimensional input streams. PLoS
Comput Biol 6, 8 (08 2010), e1000894.

[13] MATLAB. version 7.7.0 R2008b. The MathWorks Inc., 2007.
[14] ROHRER, B. Biologically inspired feature creation for multi-sensory

perception. BICA (2011).
[15] ROHRER, B. A developmental agent for learning feature, environment

models, and general robotics tasks. ICDL/Eprirob (2011).
[16] ROHRER, B. A developmental agent for learning features, environment

models, and general robotics tasks. In Joint IEEE International
Conference on Development and Learning and on Epigenetic Robotics
(2011).

[17] ROHRER, B. An implemented architecture for feature creation and
general reinforcement learning. In Workshop on Self-Programming in
AGI Systems, Fourth International Conference on Artificial General
Intelligence (2011).

[18] ROHRER, B. BECCA: Reintegrating AI for natural world interaction.
AAAI Spring Symposium on Designing Intelligent Robots: Reintegrat-
ing AI 2012 (2012).

[19] SUTTON, R., AND BARTO, A. Reinforcement learning: An introduc-
tion. Adaptive computation and machine learning. MIT Press, 1998.

116

117

1

Quantification of Uncertainty in Parameters Characterizing
Within-Host West Nile Virus Infection
Soumya Banerjee1, Melanie Moses2, Alan S. Perelson3,∗

1 Department of Computer Science, University of New Mexico, Albuquerque, New
Mexico, USA
2 Department of Computer Science, University of New Mexico, Albuquerque, New
Mexico, USA
3 Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New
Mexico, United States of America
∗ E-mail: soumya@cs.unm.edu

Abstract

West Nile virus (WNV) is a neurotropic flavivirus that has emerged globally as a significant cause of viral
encephalitis. Currently, little is known about the within-host viral kinetics of WNV during infection.
We used a series of mathematical models of increasing complexity to examine WNV dynamics in mice
and birds. To the best of our knowledge, this is the first effort to model within-host dynamics of WNV.
We use a computationally intensive method to quantify the uncertainty in parameter estimates given
uncertainty in input parameters. We set up a framework to explore really large search spaces after
imposing constraints from biology. Our method of quantifying uncertainty estimates of model parameters
in terms of uncertainty in input parameters could be more generally applicable to modeling of other
diseases where precise estimates of input parameters are hard to obtain.

118

119

These go to eleven:
Cranking up the knobs on IDS scaling performance

Sunny James Fugate
University of New Mexico

Department of Computer Science
Albuquerque, New Mexico

ABSTRACT
Signature-based intrusion detection system (IDS) approaches rep-
resent the brunt of modern threat detection methods. This is pri-
marily due to their specificity and low false-positive rates and in
spite of scalability issues. The inherent scaling issues have meant
that measurements of these systems generally ignore the scaling
of systems beyond conventional parameter spaces. In particular,
while signature-based systems are conventionally measured for to-
tal packet processing throughput and false alarm rates, performance
is highly dependent on ruleset size. While IDS packet processing
performance may appear to be well understood, IDS scaling per-
formance has not been adequately characterized beyond available
rulesets. In this paper I present my measurement methods, describe
a straightforward method for generating large random rulesets, and
present an analysis of the scaling performance of the Snort IDS
system.

1. INTRODUCTION
Signature-based detection systems rely on explicit patterns within

input traffic. Such approaches offer very precise detection of known
threats at the cost of poor recall and poor coverage in the face of
new threats and new variants of old threats. On many networks,
qualified events (those resulting in an alert within the IDS) account
for only a small portion of total network traffic. As a result, the
usable coverage of signature-based IDS systems is severely lim-
ited. Expanded coverage and partial match information might be
retained by an IDS if it were not for poor performance scaling.

Commonly, commercial systems must often be tuned for a par-
ticular environment to achieve acceptable performance[1]. The
most common "tuning“ method is simply to remove unused sig-
natures. The costs of performing a signature-based detection are
roughly proportional to the sum of packet length and total signa-
ture length[2]. As network bandwidths have increased, so have the
number and variants of threats, driving the need for expanded cov-
erage, but remaining bounded by proportional increases in detec-
tion costs. It is the belief of the author that the high cost of modern
IDS, is inextricably due to poor coverage. If performance scaling
of these systems is well-understood, methods may be identified to
ameliorate long-term performance degradation.

The contribution of this paper is an experimental analysis of
Snort IDS scaling performance as ruleset size is varied. In addi-
tion to performance scaling, the frequency distribution of events is
assessed and an assessment of IDS alerts in respect to their infor-
mation content. The remainder of this paper reviews prior research
in the field, defines a set of metrics and cost functions for describ-
ing performance scaling of signature-based systems, and describes
the result of series of experiments used to determine the scaling
performance of recent versions of the widely used Snort IDS.

2. BACKGROUND

2.1 Signatures & Coverage
Signature-based IDS are precise and due to their simplicity have

been employed within many large-scale, commercially available
systems. In many systems each input (e.g. header, packet, TCP ses-
sion, event, event sequence, derived feature set, etc.) is compared
against sets of thousands of signatures in a more-or-less brute-force
manner. The patterns used and the algorithms employed for pattern
matching are very efficient. Significant gains have been made in
the last two decades in the area of pattern matching, leading to sub-
stantial performance improvements[3, 4, 5, 6, 7].

Commonly, signatures are written to be very precise with re-
spect to vulnerabilities, exploits, and other “known bad" sequences.
False negatives are common and false-positives are often manually
“tuned" out of rulesets over time[11]. Such systems have the ben-
efit of precision, but are generally poor at detecting new exploits
and are very labor intensive to maintain in the face of large num-
bers of vulnerabilities and exploits. The rule-tuning process of-
ten consumes a significant portion of the time spent managing a
signature-based system’s ruleset. Adaptive systems have been pro-
posed and constructed to alleviate some of these issues[12, 13, 14].
In many instances adaptation occurs only in direct response to oper-
ator feedback in identifying false-positives or operator information
overload.

There has been a number of independent studies regarding the
expansion of IDS coverage. Aikelin et al. describe an approach
to expanding Snort’s coverage of previously undetected variants by
relaxing and varying signature parameters[10]. In their approach,
rules are generalized by allowing lower-priority partial matches
when most of the features of a rule are matched. By generaliz-
ing each rule in this way, expanded coverage is gained. Other
approaches by Brumley et al. have focused on automated gener-
ation of vulnerability signatures[15, 16]. This has the benefit of
potentially catching zero-day attacks, but appears to be limited to
host-based detection systems. Network-based detection has also
benefited by the advent of automated signature generation, such
as the polymorphic worm signature approach by Zhang et al..[17]
or the use of honeypots and attack fingerprints by Portokalidis et
al[18]. As automated signature generation techniques evolve, the
need for improved IDS detection performance characteristics be-
come paramount.

2.2 Costs & Concessions
When implementing an IDS some form of cost analysis (e.g.

computing, latency, hardware, training, etc.) is generally performed
in order to choose the right IDS technology and ruleset for a given
network. There are many trade-offs which result in sub-optimal de-

1 120

tection, but which decrease the IDS cost substantially. Many mod-
ern IDS also rely on labor-intensive tuning and rule-refinement to
match particular network characteristics and known host vulnera-
bilities. While improving performance, this process also introduces
a greater chance of false negatives. Work by Fan, et al. describe
cost metrics in terms of operational costs, attacker induced dam-
age, and incident response, citing the need to consider cost within
the development and deployment of IDS[13]. Others have cleverly
incorporated cost assessment into decision support systems to pro-
pose or enact response actions[19], IDS reconfiguration, and dy-
namic performance tuning[14].

Cost-driven optimizations allow IDS to be tractable given lim-
ited computing resources. However, they can easily be based on
tenuous assumptions. Any risk analysis which performs this type
of trade-off analysis needs to consider the possibility of attackers
gaming a system using knowledge of financial or computational
concessions. For example, the rule ordering of Snort and other
signature-based IDS are partially under user control and partially
under the control of engineering optimizations. This ordering mat-
ters. For example, the Snort IDS, by default only returns the first
(or at best a limited number) of alerts for a packet in order to elim-
inate as many comparisons as possible [20]. Careful management
of ruleset in order to achieve desired performance goals may also
mask performance issues and can actually decrease the usefulness
of IDS by removing contextual knowns from the stream of true-
positives being displayed to an analyst. In a perfectly “tuned" sys-
tem one might expect only the most high-priority events to be dis-
played and all other events to be discarded (or at least hidden). If it
were at all possible to perform intrusion detection without making
such concessions, we would greatly simplify the task of the IDS
designer (or maintainer). The challenge is achieving these goals
while also improving capabilities and performance.

2.3 Performance Measurement
IDS experimentation and test has tended to focus on three char-

acteristics, namely: detection performance, resource usage, and re-
silience[21]. Detection performance uses ground truth data to de-
termine detection rates: the true and false positives and negatives
detected by a system. The resources used by a particular system can
be measured as the average computing cost per packet or stream
processed, where packet sizes are specified as part of the test cri-
teria. Resilience has a broad array of meanings: performance in
resource constrained environments; effects of resource contention;
effects of high alarm rates during abnormal attacks; losses incurred
during high network loads; resilience to artificial attacks used to
mask attacker activities; and resilience to various attacks to the IDS
itself[21].

It is important to note that IDS performance characteristics are
generally not independent (though many experimenters have treated
them as such). Of primary importance is the coupling of resource
utilization and detector performance, performance degrading as con-
tention for the CPU or other shared resources increases[22, 23].
Similar to the approach given in this paper many studies also con-
sider the affect of ruleset size on successful packet processing rates
for a given system[22].

The use of synthetic or generated attack data is also common
for assessing IDS performance and resilience[24, 25]. Privacy and
confidentiality concerns are the primary motivation. As such, cre-
ating and making available labeled datasets is no easy task. Syn-
thetic approaches are not without their pitfalls, occasionally leading
to erroneous conclusions. Other testing approaches (such as those
used within the DARPA 1998 Evaluation) use real traffic on real
networks, but may still mis-characterize IDS performance due to

closed network topologies and unrealistic attack sequences[26]
I have taken a different perspective on IDS performance and have

chosen to measure its scaling performance in respect to ruleset sizes
well beyond rulesets which are commonly available. Within the
following experiments, the size of the IDS ruleset is intended to
serve as a proxy for IDS coverage. The actual coverage of an IDS
is is difficult to measure given that changing environments, vulner-
abilities, and network traffic each may contribute to whether alerts
occur or are relevant. I am concerned with the long-term scalability
of such systems as new threats emerge and new rules are added.

3. IDS SCALING PERFORMANCE

3.1 Generating Large Rule-sets
An obvious issue with testing an IDS’s rulesets size scaling per-

formance is that there don’t exist that many rules in the wild. A sig-
nificant deviation from traditional testing was the introduction of a
randomly generated ruleset. This was necessary in order to test the
performance of the system beyond the scale and scope of available
signature sets. It was desirable that the generated rules were sta-
tistically similar to the existing ruleset in respect to the string and
regular expression features used. For the purposes of generating
a large number of random rules, a straightforward algorithm using
non-parametric statistics was used to generate a ruleset of approxi-
mately 800K rules. It is important to note that the random rules do
not have any semantics and are solely used to test scalability of the
IDS. As such, traditional performance measures (such as rates of
true positives and false negatives) are meaningless.

To generate a large number of random rules: First, an existing
ruleset is split into individual features and each feature appended
to a file according to its label. Each labeled file contains as many
duplicates and unique features as there are duplicates and unique
features in the actual ruleset, totaling approximately 27,000 unique
features. Second, based on the number of rules desired, each rule in
an actual Snort ruleset is permuted thousands of times by replacing
each labeled feature with a sample drawn randomly from the la-
beled file for the feature. This was done in order to retain a similar
distribution of the feature labels and total number of features that
were used. As a result, random rules were generated that have the
same distribution of features and feature values as rulesets that are
normally used. Lastly, invalid and duplicate rules were removed by
eliminating rules which did not pass Snort’s rule parser.

One issue with this approach is that many invalid and duplicate
rules are generated and must be removed in order for the ruleset to
be used. Of 1.2M rules randomly generated, only 800K could be
retained after removal of duplicates. This leads to the random rules
being slightly biased towards more complex rules with a larger
number of features. As this results in an overestimate of perfor-
mance costs it is not an issue in respect to my research goals.

3.2 Measuring Performance Costs
Although the true cost function for performing detection using

a given IDS configuration and computing system is unlikely to be
known, it can be estimated using experimental measurements. In
particular, we can easily define a performance metric incorporating
cost functions Ctime (total CPU time) and Closs (percent packet
loss) and parameterized by the signature set size |n|. The cost func-
tions can be multiplicatively combined to mean CPU-time per % of
packets processed, appropriately penalizing high CPU-time or high
packet loss. Note that the cost function will change (particularly
with respect to packet drop rates) as the line speed is decreased.

2 121

Startup Time vs Ruleset Size

10 000 20 000 30 000 40 000
rules

20

40

60

80

100

120

140

time

Figure 1: 5th order polynomial fit for Snort’s startup time as mea-
sured in seconds. R2: 0.9998.

C(n) = Ctime(n) · Closs(n) =
Ctime(n)

1− Closs(n)
(1)

The cost functions Ctime and Closs, need to be experimentally
determined. Depending on the application, the cost functions should
represent conservative estimates of the actual performance costs.

My test system was an Ubuntu Linux 11.04 system running on
a pair of 2GHz Dual-core AMD Operation processors, 28GB of
RAM, and consumer-grade Broadcom BCM5780 Gigabit ethernet
cards. The default Snort configuration (for version 2.9.0.3) was
used, but with secondary detection engines disabled or suppressed.
When a traditional ruleset was used, it was using the SourceFire R©

provided “VRT" release downloaded on Oct. 17, 2011.
My measurement approach obtains functional forms of the cost

functions for a particular system and IDS configuration. Many
of the performance characteristics of IDS systems are highly de-
pendent on system and software configuration[22]. Even small
changes in configuration or run-time options can have significant
effects on overall performance[23]. Hardware configuration, sys-
tem settings, and software configurations were kept consistent be-
tween tests.

3.2.1 Startup Performance
One of the first issues discovered in the current version of Snort

is extremely slow startup times for large ruleset sizes. Startup per-
formance is relevant as it can result in experiment run-time being
dominated by startup time. As a result, experiment sizes were kept
relatively small (< 50K rules) in respect to the ruleset available
(∼ 800K rules). Startup time was also required so that measure-
ments could be delayed until the IDS was ready for input.

An experiment was run to determine startup time which would
limit experiments. This experiment made use of the Linux “time"
program while running Snort against a small file containing a small
sample of 10 packets. The packet processing time in this case did
not have a measurable impact on the results for the sizes of rule-
sets tested. 10 trials were run at increments of 1,000 rules for each
ruleset size between 0 and 45, 000 (n = 450). Figure 1 shows
a best-fit polynomial function for Snort’s startup time on my test
system. A single test run using 100K rules required approximately
17 minutes which corresponded closely to the polynomial fit. Con-
sequently, the current startup performance hinders experimentation
with extremely large rulesets. Large rulesets might still be used, but
would need to be split between multiple Snort instances to achieve
reasonable startup times. It is also possible that there are configu-
ration options which may alleviate the issue, though these are not

0 10000 20000 30000 40000

4x109

6x109

8x109

1x1010

Rule Count

C
PU

 T
im

e
(n

s)

Signature set size vs CPU Time (n=400)

Linear fit:
y = 103634 x + 4.01621e+09
rms = 0.768 seconds
χ2 = 214.47
σ = 1.06 seconds

Figure 2: Linear scaling of total CPU time of the Snort IDS with
ruleset size. Test system was Linux Ubuntu 11.04, running on a
pair of 2GHz Dual-core AMD Opteron processors.

known.

3.2.2 CPU Time Scaling Performance
Since we are comparing the cost of Snort instances running with

various sized rulesets, we can gauge the computing cost by measur-
ing the performance on a test platform as ruleset size is increased
and finding an acceptable function to model the system’s behavior
as shown in Figure 2.

A linear fit resulted in a simple estimated cost function in terms
of nanoseconds of CPU time:

Ctime(x) = 103634x+ 4.01621× 109 (2)

The y-intercept represents the total CPU-time for the entire sys-
tem when the IDS isn’t doing anything. The slope of the function
represents the cost in nanoseconds of CPU-time incurred due to
ruleset size increases. It was expected that the scaling performance
of the Snort IDS was linear in respect to ruleset size as the ver-
sion of Snort being assessed uses an Aho-Corasick algorithm for
string matching[2, 6]. This algorithm’s complexity is linear in the
sum of the length of patterns, the string being matched, and out-
put length[28]. Snort’s resource usage appears to scale linearly as
shown in Figure 2 with the glaring exceptions of startup time and
packet drops as described in the next section.

3.2.3 Packet Drop-rate Scaling Performance
Unfortunately, estimating performance by simply measuring to-

tal system CPU-time is eventually confounded by shared-resource
issues when measuring performance of Snort running with large
rulesets. Large rulesets, while incurring only a proportional in-
crease in CPU-time, result in substantial packet loss on the front-
end of the IDS. This finding is the reason that packet loss is in-
cluded in the cost function for the system. Without considerations
of packet loss we might only slightly overestimate performance
costs for small rulesets but we would grossly underestimate per-
formance costs for larger rulesets.

Several experiments were run to learn the packet drop rates as a
function of ruleset size. The randomly generated ruleset was used
to determine a worst case scaling rate. For these tests, the alert-
ing and logging facilities of Snort were disabled. In this way Snort
will not block due to I/O constraints on output alerting and logging
costs. This is particularly relevant when measuring performance

3 122

0 10000 20000 30000 40000

0

0.2

0.4

0.6

0.8

1

% Packets Dropped vs Ruleset Size

%
 o

f p
ac

ke
t d

ro
pp

ed

ruleset size

Figure 3: Packets dropped by Snort as ruleset size increases (n=60).
Packets were replayed at the network card’s maximum throughput
(∼ 400 Mbps).

0 10000 20000 30000 40000

0

20000

40000

60000

80000

100000

120000

Ruleset Size

Al
er

t C
ou

nt

Alert Count vs Ruleset Size

Figure 4: 10 trials at each of 1K through 40K ruleset sizes for a
1M packet sample on a live ethernet interface. Packets were re-
played at the maximum interface speed (∼ 400 Mbps). The non-
monotonicity is due to high packet drop rates. Coverage measure-
ments must therefore be based on cached PCAP data to eliminate
drops from I/O blocking and CPU contention.

in respect to ruleset size as even small sets of randomly generated
rules are likely to produce a larger number of alerts than conven-
tional rules.

Figure 3 demonstrates that while rulesets of size n increase the
system overhead proportionally, the larger complexity of the ruleset
increases packet drop rates by up to a factor of 10. The cause for the
high packet drop rate is likely that the Snort process is starved for
CPU-time due to processor contention or conflicting I/O IRQs, pos-
sibly due to configuration issues such as a high NAPI (New API)
budge rate as suggested in [23]. The unfortunate side effect is that
the total number and type of alerts produced is not monotonically
increasing as ruleset size increases (see Figure 4).

High packet-loss issues have been noted by others and various
methods have been used to limit packet loss[23]. In our case, how-
ever, as the number of rules is increased, contention for the CPU
will eventually result in the same problem. As a result, the overall
shape of the packet loss function is unlikely to change significantly,
though this has not been thoroughly explored.

If we measure Snort’s packet processing rate using the built-in
performance monitor we can estimate the performance bottleneck
as an exponential function in terms of the percentage of received
packets processed. On my test system, an acceptable functional

Over-estimating fit
of portion of packets processed

10 000 20 000 30 000 40 000

0.2

0.4

0.6

0.8

1.0

(a)

Estimated Packet Processing and Drop Rates vs Ruleset Size

% Dropped

% Processed

10 000 20 000 30 000 40 000

0.2

0.4

0.6

0.8

1.0

(b)

Figure 5: (a) Over-estimating fit for packet processing rate. (b)
Curves estimating packet processing rate as ruleset size is in-
creased.

Default ruleset size

CPU-time per %packets vs Ruleset Size

5000 10 000 15 000 20 000 25 000 30 000 35 000
Rules

2.0¥1010

4.0¥1010

6.0¥1010

8.0¥1010

1.0¥1011

1.2¥1011

CPU-time per % packets

Figure 6: The cost function for the Snort IDS running on a test
system. CPU Time per percent packet units are nanoseconds per %.

model was found:

PacketProcessingRate ≤ 1.0392−0.008x + 0.0583 (3)

As can be seen from Figs. 5a and 5b, this fit is a gross over-
estimation of experimental measurements, but sufficient for our
purposes. An over-estimation of the number of packets success-
fully processed will result in an under-estimate of the effects of
increasing the number of rules in a particular IDS instance. For my
test system the packet-loss rate is:

Closs(n) ≥ 0.9417− 1.0392−0.008n (4)

It is important to reiterate that other architectures, operating sys-
tem kernels, and configurations will result in different scaling per-
formance, though the basic functional shape is likely to remain sim-
ilar. Figure 6 shows the scaling performance of the Snort IDS for
my test system. Note that the default ruleset size is well below the
knee of the performance curve.

4. DISCUSSION & FUTURE WORK
The basic measurement approaches presented here are not novel

except for the explicit representation of scaling performance be-
yond traditional ruleset sizes. As is the case with many scaling per-
formance studies, I have simply abused the IDS system by forcing it
to perform detection outside of its design parameters. However, the
end goal of all of this hand-wringing over IDS performance scal-
ing is to show how the performance characteristics are amenable to
new optimization methods[30, 31]. The promise is that much larger

4 123

rulesets might use the less computing power by trading an increase
in unlikely false negatives for smaller detector costs. For prediction
to play a significant role in improving IDS performance, new rule-
sets with superior coverage are needed along with new performance
models and testing methods.

5. REFERENCES
[1] N. Stakhanova, Y. Li, and A. A. Ghorbani. Classification and

Discovery of Rule Misconfigurations in Intrusion Detection
and Response Devices. Proceedings of the 2009 World
Congress on Privacy, Security, Trust and the Management of
e-Business. 2009).

[2] V. Dimopoulos, I. Papaefstathiou, and D. Pnevmatikatos. A
Memory-Efficient Reconfigurable Aho-Corasick FSM
Implementation for Intrusion Detection Systems. Proceedings
of the 2007 International Conference on Embedded Computer
Systems: Architectures, Modeling and Simulation. pp.
186-193. (2007).

[3] S. Kim. Pattern Matching Acceleration for Network Intrusion
Detection Systems. SAMOS’05: Proceedings of the 5th
international conference on Embedded Computer Systems:
architectures, Modeling, and Simulation. (2005).

[4] C.-H. Lin and S.-C. Chang. Efficient pattern matching
algorithm for memory architecture. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 19, no. 1,
pp. 33-41. (2011).

[5] D. Luchaup, R. Smith, C. Estan, and S. Jha. Multi-byte regular
expression matching with speculation. Recent Advances in
Intrusion Detection. (2009).

[6] M. Norton. Optimizing Pattern Matching for Intrusion
Detection. Technical Report, SourceFire Inc (2004).

[7] N. Schear, D. R. Albrecht, and N. Borisov. High-Speed
Matching of Vulnerability Signatures. LNCS, vol. 5230, no.
2008, pp. 155-174. (2008).

[8] L. Vespa, M. Mathew, and N. Weng. Predictive Pattern
Matching for Scalable Network Intrusion Detection.
Information and Communications Security. LNCS, vol. 5927,
pp. 254-267. Springer, Heidelberg (2009).

[9] G. Tripp. A Finite-State-Machine based string matching
system for Intrusion Detection on High-Speed Networks.
Proceedings of EICAR. (2005).

[10] U. Aickelin, J. Twycross, and T. Hesketh-Roberts. Rule
Generalisation in Intrusion Detection Systems using Snort.
International Journal of Electronic Security and Digital
Forensics. (2008).

[11] I. Dubrawsky and R. Saville. SAFE: IDS Deployment,
Tuning, and Logging in Depth Authors. CISCO SAFE
Whitepaper, pp. 1-58. (2003).

[12] Z. Yu, J. Tsai, and T. Weigert. An adaptive automatically
tuning intrusion detection system. ACM Transactions on
Autonomous and Adaptive Systems (TAAS), vol. 3, no. 3.
(2008).

[13] W. Fan, W. Lee, S. Stolfo, and M. Miller. A multiple model
cost-sensitive approach for intrusion detection. LNCS, vol.
1810, pp. 142-154. (2000).

[14] W. Lee, J. Cabrera, A. Thomas, N. Balwalli, S. Saluja, and Y.
Zhang. Performance adaptation in real-time intrusion
detection systems. In Proceedings of the 5th International
conference on Recent advances in intrusion detection, vol.
2416, pp. 252-273. (2002).

[15] D. Brumley, J. Newsome, D. Song, Hao Wang, and S. Jha.
Towards Automatic Generation of Vulnerability-Based

Signatures. 2006 IEEE Symposium on Security and Privacy,
pp. 2-16. (2006).

[16] D. Brumley, J. Newsome, and D. Song. Theory and
techniques for automatic generation of vulnerability-based
signatures. IEEE Transactions on Dependable and Secure
Computing, vol. 5, no. 4. (2008).

[17] J. Zhang, H. Duan, L. Wang, Y. Guan, and J. Wu. 2008
International Conference on Computer and Electrical
Engineering. in 2008 International Conference on Computer
and Electrical Engineering (ICCEE), 2008, pp. 8-13. (2008).

[18] G. Portokalidis, A. Slowinska, H. Bos, G. Portokalidis, A.
Slowinska, and H. Bos. Argos: an emulator for fingerprinting
zero-day attacks for advertised honeypots with automatic
signature generation. ACM SIGOPS Operating Systems
Review, vol. 40, no. 4, pp. 15-27. (2006).

[19] C. Strasburg, N. Stakhanova, S. Basu, and J. Wong. Intrusion
response cost assessment methodology. Proceedings of the 4th
International Symposium on Information, Computer, and
Communications Security. (2009).

[20] M. Roesch and C. Green. SNORT Users Manual 2.8.6. pp.
1-191. (2010).

[21] N. J. Puketza, K. Zhang, M. Chung, B. Mukherjee, and R. A.
Olsson. A methodology for testing intrusion detection
systems. IEEE Transactions on Software Engineering, vol. 22,
no. 10, pp. 719-729. (1996).

[22] L. Schaelicke, T. Slabach, B. Moore, and C. Freeland. LNCS,
vol. 2820, no. 9. pp. 155-172. Springer, Heidelberg (2003).

[23] K. Salah and A. Kahtani. Improving Snort Performance
Under Linux. Communications, IET, vol. 3, no. 12, pp.
1883-1895. (2009).

[24] J. Haines, R. Lippmann, D. Fried, and M. Zissman. 1999
DARPA intrusion detection evaluation: Design and
procedures. Technical Report ESC-TR-99-061, MIT (2001).

[25] D. Mutz, G. Vigna, and R. Kemmerer. An Experience
Developing an IDS Stimulator for the Black-Box Testing of
Network Intrusion Detection Systems. Proceedings of the 19th
Annual Computer Security Applications Conference. pp.
374-383. (2003).

[26] M. V. Mahoney and P. K. Chan. An analysis of the 1999
DARPA/Lincoln Laboratory evaluation data for network
anomaly detection. Recent Advances in Intrusion Detection.
(2003).

[27] J. Novak and S. Sturges. Target-Based TCP Stream
Reassembly. Technical Report, SourceFire Inc (2007).

[28] A. V. Aho and M. J. Corasick. Efficient string matching: an
aid to bibliographic search. Communications of the ACM, vol.
18, no. 6, pp. 333-340. (1975).

[29] S. Sen. Performance Characterization & Improvement of
Snort as an IDS. Technical Report, Princeton University
(2007).

[30] S. Fugate. Using Prediction to Improve the Performance of
Network Intrusion Detection. Proceedings of the 2011 UNM
Computer Science Student Conference. pp. 65-69. (2011).

[31] S. Fugate. Go for broke: Speculatively Bootstrapping Better
IDS Performance. Proceedings of Research in Attacks,
Intrusion, and Defenses. (2012). –Submitted

5 124

125

Oriented and Degree-generated Block Models:
Generating and Inferring Communities

with Inhomogeneous Degree Distributions

Yaojia Zhu1?, Xiaoran Yan1, and Cristopher Moore1,2

1 University of New Mexico
Albuquerque NM 87131 USA

2 Santa Fe Institute
1399 Hyde Park Road, Santa Fe NM 87501, USA

Abstract. The stochastic block model is a powerful tool for inferring
community structure from network topology. However, it predicts a Pois-
son degree distribution within each community, while most real-world
networks have a heavy-tailed degree distribution. The degree-corrected
block model can accommodate arbitrary degree distributions within com-
munities. However, since it takes the vertex degrees as parameters rather
than generating them, it cannot use them to help it classify the vertices,
and its natural generalization to directed graphs cannot even use the
orientation of the edges. In this paper, we present variants of the block
model with the best of both worlds: they can use vertex degrees and
edge orientations in the classification process, while tolerating heavy-
tailed degree distributions within communities. We show that for some
networks, including synthetic networks and networks of word adjacencies,
these new block models achieve a higher accuracy than the standard or
degree-corrected block models.

Keywords: We would like to encourage you to list your keywords within
the abstract section

1 Introduction

In many real world networks, vertices can be divided into communities or mod-
ules based on their connecting patterns. Social communities can be forged by
interactions in daily activities like karate training [22]. The blogosphere contains
groups of linked blogs with similar political views [1]. English words can be
tagged as different parts of speech based on their adjacencies in large texts [15].
Understanding these taxonomic structures is crucial in deciphering these topol-
ogy data. There has been a great deal of work on efficient algorithms for com-
munity detection in networks (see [10, 19] for reviews).

The Stochastic block model (SBM) [9, 11, 20, 3] is a popular model-based ap-
proach for functional community detection. It partitions the vertices into com-
munities or blocks, where vertices belonging to the same block are stochastically

? This work was supported by the McDonnell Foundation.

126

2 Yaojia Zhu, Xiaoran Yan, Cristopher Moore

equivalent [21] in the sense that the probabilities of a connection with all other
vertices are the same for all vertices in the same block. With this general defi-
nition of functional communities, block models can capture various community
structures, including assortative, disassortative, satellite communities and mix-
tures of them [16, 17, 14, 13, 8, 7].

Given the block memberships, the SBM assumes that each edge is generated
independently, and follows a Bernoulli distribution solely determined by block
memberships of its endpoints. Since edges in the SBM are independent, and
since every pair of vertices in a given pair of blocks have a link with the same
probability, for large n the degree distribution within each block is Poisson. As
a consequence, the SBM dictates that vertices with very different degrees are
unlikely to be in the same block. This leads to problems when modeling the
networks like the political blogs, since within each community, e.g. liberal or
conservative, there are both highly popular and isolated vertices at the same
time.

Recently, Karrer and Newman [12] developed the degree-corrected block model
for undirected networks (DC). They add a parameter for each vertex, which
controls its expected degree. By setting these parameters equal to the observed
degrees, the DC can accommodate arbitrary degree distributions within commu-
nities. This removes the model’s tendency to separate high-degree and low-degree
vertices into different communities.

On the other hand, the degree-corrected model cannot use the vertex degrees
to help it classify the vertices, precisely because it takes the degrees as param-
eters rather than as data that needs to be explained. For this reason, DC may
actually fail to recognize communities that differ significantly in their degree
distributions. Thus we have two extremes: the SBM separates vertices by degree
even when it shouldn’t, and DC fails to do so even when it should.

For directed graphs, the natural generalization of DC, which we call directed
degree-corrected block model (DDC), has two parameters for each vertex: the
expected in-degree and out-degree. But this model cannot even take advantage
of edge orientations. For instance, in English adjectives usually precede nouns
but rarely the other way around. The ratio of each vertex’s in- and out-degree
could be very indicative for its block membership, and leveraging this part of
the degree information would be essential.

In this paper, we first propose the oriented degree-corrected block model
(ODC), which combines the strengths of the degree-corrected and uncorrected
block models. ODC is able to utilize the edge orientations for community detec-
tion by only correcting the total degrees instead of the in- and out-degrees sep-
arately. We show that for networks with strongly asymmetric behavior between
communities, including synthetic networks and networks of word adjacencies in
English text, ODC achieves a higher accuracy than either the original stochastic
block model or the degree-corrected block model.

We then propose the degree-generated block model (DGBM), which treats
the expected degree of each vertex as generated from prior distributions in each
community, such as power laws with different exponent and cutoffs in each com-

127

Degree Correction in Stochastic Block Models 3

munity. We then include the probability of these degrees in the likelihood of a
given block assignment. In this way, the model captures the dependence of the
degree distributions on the community structure. These degree-generated block
models automatically strike a balance between allowing vertices of different de-
grees to coexist in the same community on the one hand, and using vertex degrees
to separate vertices into right communities on the other. DGBM works especially
well for detecting community structures where communities have highly inhomo-
geneous degree distributions. These degree distributions differ enough between
communities so that we should use vertex degrees to help us classify the vertices.

Empirical study show that DGBM are indeed a very robust choice especially
when the connecting pattern alone is not enough to detect the community struc-
ture. DGBM has a further advantage in faster convergence as it reshapes the
landscape of the parameter space, providing the searching algorithm a short cut
to the desired community structure.

These new variants of the stochastic block model give us the best of both
worlds: they can tolerate heavy-tailed degree distributions within communities,
but can also use degrees and edge orientations to help classify the vertices. In
addition to their performance on these networks, our models illustrate a valu-
able point about generative models and statistical inference: when inferring the
structure of a network, you can only use the information that you try to generate.

2 The models

In this section, we review the degree-corrected block model of [12], and present
our variations on it, namely oriented and degree-generated block models.

2.1 Background: degree-corrected block models

Throughout, we use N and M to denote the number of vertices and edges, and
K to denote the number of blocks. The problem of determining the number of
blocks is a subtle model selection problem, which we do not address here.

In the original stochastic block model, the entries Auv of the adjacency matrix
are independent and Bernoulli-distributed, with P (Auv = 1) = pgu,gv . Here
gu is the block to which u belongs, where p is a K × K matrix. Karrer and
Newman [12] consider random multigraphs where the Auv are independent and
Poisson-distributed,

Auv ∼ Poi(θuθvωgu,gv) .

Here ω replaces p, and θu is an overall propensity for u to connect to other ver-
tices. Note that since the Auv are independent, the degrees du will vary some-
what around their expectations; however, the resulting model is much simpler
to analyze than one that controls the degree of each vertex exactly.

The likelihood with which this model generates a graph G is then

P (G | θ, ω, g) =
∏

u,v

(θuθvωgugv)
Auv

Auv!
exp (−θuθvωgugv) . (1)

128

4 Yaojia Zhu, Xiaoran Yan, Cristopher Moore

To remove the obvious symmetry where we multiply the θ’s by a constant C
and divide ω by C2, we can impose a normalization constraint

∑
u:gu=r

θu = 1
for each block r. Under these constraints, the maximum likelihood estimates
(MLEs) for the θ parameters are θ̂u = du/κgu where κr =

∑
u:gu=r

du is the
total degree of the vertices in block r. For each pair of blocks r, s, the MLE
for ωrs is then mrs, the number of edges connecting block r to block s (where
edges within blocks are counted twice). Substituting these MLEs for θ and ω
then gives the log-likelihood

logP (G | g) =
1

2

K∑

r,s=1

mrs log
mrs

κrκs
. (2)

2.2 Directed and oriented degree-corrected models

The natural extension of the degree-corrected model to directed networks, which
we call the directed degree-corrected block model (DDC), has two parameters
θinu , θ

out
u for each vertex. The number of directed edges from u to v is again

Poisson-distributed,
Auv ∼ Poi(θoutu θinv ωgu,gv) .

With the constraints
∑
u:gu

θinu =
∑
u:gu

θoutu = 1 for each block r, the MLEs for
these parameters (see the online version) are

θ̂outu =
doutu

κoutgu

, θ̂inu =
dinu
κingu

, ω̂rs = mrs , (3)

where κinr , κ
out
r denote the total in- and out-degrees in block r and mrs is the

number of directed edges from block r to block s. Substituting these MLEs gives
the log-likelihood

logP (G | g) =

K∑

r,s=1

mrs log
mrs

κoutr κins
. (4)

In the DDC, the in- and out-degrees of each vertex are completely specified
by the θ parameters, at least in expectation. Thus the DDC lets vertices with
arbitrary in- and out-degrees to fit comfortably together in the same block. On
the other hand, since the degrees are given as parameters, rather than as data
that the model must generate and explain, the DDC cannot use them to infer
community structure. Indeed, it cannot even take advantage of the orientations
of the edges, and as we will see below it performs quite poorly on networks with
strongly asymmetric community structure.

To deal with this, we present a partially degree-corrected block model capa-
ble of taking advantage of edge orientations, which we call the oriented degree-
corrected block mode (ODC). Following the maxim that we can only use the
information that we try to generate, we separate the generation of the edge
orientations from the degrees.

129

Degree Correction in Stochastic Block Models 5

Let Ḡ denote the undirected version of a directed graph G, i.e., the multi-
graph resulting from erasing the arrows for each edge. Its adjacency matrix is
Āuv = Auv+Avu, so (for instance) Ḡ has two edges between u and v if G had one
pointing in each direction. The ODC can be thought of as generating Ḡ accord-
ing to the undirected degree-corrected model, and then choosing the orientation
of each edge according to another matrix ρrs, where an edge (u, v) is oriented
from u to v with probability ρgu,gv . Thus the total log-likelihood function for
such a model is

logP (G | g, ρ) = logP (Ḡ | g) + logP (G | Ḡ, g, ρ) . (5)

Writing m̄rs = mrs + msr and κ̄r = κinr + κoutr , we can set θu and ωrs for the
undirected model to their MLEs as in Section 2.1, giving

logP (G | g) =
1

2

K∑

r,s=1

m̄rs log
m̄rs

κ̄rκ̄s
. (6)

The orientation term is

logP (G | G, g, ρ) =
∑

rs

mrs log ρrs =
1

2

∑

rs

(mrs log ρrs +msr log ρsr) , (7)

For each r, s we have ρrs + ρsr = 1, and the MLEs for ρ are

ρ̂rs = mrs/m̄rs . (8)

As (7) is maximized when ρ̂rs are near 0 or 1 for r 6= s, the edge orientation
term prefers highly asymmetric inter-block connections. Since ρ̂rr = 1/2 for any
block r, it also prefers disassortative mixing, with as few connections as possible
within blocks.

Substituting the MLEs for ρ and combining (6) with (7), the total log-
likelihood is

logP (G | g) =

K∑

r,s=1

mrs log
mrs

κrκs
. (9)

As we show in the online version, we can also view the ODC as a special
case of the DDC, where we add the constrain θinu = θoutu for all u. Moreover,
if we set θu = 1 for all u, we obtain the original block model, or rather its
Poisson multigraph version where each Auv is Poisson-distributed with mean
ωgu,gv . Thus

SBM ≤ ODC ≤ DDC ,

where A ≤ B means that model A is a special case of model B, or that B is an
elaboration of A.

130

6 Yaojia Zhu, Xiaoran Yan, Cristopher Moore

2.3 Degree-generated block model

Another way to utilize the degree information for community detection is through
the degree distributions in each community. In all block models, the degree of
each vertex is asymptotically Poisson-distributed. But in the SBM, all the ver-
tices in each community have the same expected degree, while DC or DDC fully
specify each vertex’s expected degree using θ.

A natural way to make explicit use of the degree information is to force the
model to generate the vertex degrees in each community according to some dis-
tribution whose parameters differ from one community to another. To maintain
the tractability of the random multigraph, we generate the parameters θ, and
thus the expected degree of each vertex, rather than the degrees themselves.
Given a vertex u, we first generate its expected degree θu from a prior degree
distribution according to its block membership, then use it as the θ parame-
ter in the degree-corrected block model to generate edges. The degree-generated
block model is thus a hierarchical model, which extends previous degree-corrected
block models by adding a degree generation (DG) stage on top.

Likelihood functions and parameter estimation
Given the number of vertices N and number of blocks K, the generative process
for undirected networks is described in Table. 1.

Table 1. Degree-generated block model (undirected)

For each vertex u = 1, ..., N
Generate θu| gu, ψ1..K ,∼ Fgu(·|ψgu)

For each pair of vertices (u, v)
Generate Auv ∼ Poi(θuθv ωgugv)

In the table, ψr are the hyper parameters of the degree distributions for block
r. The form (cdf) of the degree distributions are denoted as Fr(·|ψr), which are
given using domain knowledge. If such prior knowledge does not exist, we shall
pick distributions which best fit the observed degree sequence. Note that the
second stage is just the DC model (1), and we call the whole model DG-DC.

Table 2. Degree-generated block model (directed)

For each vertex u = 1, ..., N
Generate θinu | gu, ψin

1..K ,∼ F in
gu(·|ψin

gu)
Generate θoutu | gu, ψout

1..K ,∼ Fout
gu (·|ψout

gu)
For each pair of vertices (u, v)

Generate Auv ∼ Poi(θuv ωgugv)
Generate Avu ∼ Poi(θvu ωgvgu)

131

Degree Correction in Stochastic Block Models 7

For directed graphs, we have ψin
r and ψout

r as the hyper parameters of the in-
and out-degree distributions for block r respectively. Their degree distributions
are denoted as F in

gu(·|ψin
gu) and Fout

gu (·|ψout
gu). Both of them can be specified by

domain knowledge. For directed graphs, DG stage can precede either DDC or
ODC. This flexibility comes from the following options available for the degree-
correction term θuv, which we should name accordingly:

θuv =

{
θoutu θinv DG-DDC
θuθv DG-ODC .

Here θu = θoutu + θinu is the total degree of vertex u. We also have the option to
generate total degrees instead, then generate directed networks with orientation
parameters ρ as we did in (7). But for the rest of the paper, we use the above
directed version for DG-ODC.

 θv θu

Auv

N2

ωgugv

 gu

 gv

N N

ψgv ψgu

 out in

 out in

Fig. 1. Graphical model of DG-DDC

Under DG, θ parameters θ are now generated by hyper parameters ψ, as
demonstrated by the graphical model in Fig. 1. The log-likelihood function is
thus composed of two terms, for DG-DC:

logP (G | g, θ, ω, ψ) = logP (θ | g, ψ) + logP (G | θ, g, ω) . (10)

where the first terms is for degree-generation stage, with the second term for
edge-generation stage. Similarly, we have DG-DDC:

logP (G | g, θout, θinω, ψ) = logP (θout, θin | g, ψ) + logP (G | θout, θin, g, ω) .
(11)

And DG-ODC:

logP (G | g, θ, ω, ψ) = logP (θout, θin | g, ψ) + logP (G | θ, g, ω) . (12)

132

8 Yaojia Zhu, Xiaoran Yan, Cristopher Moore

The inference of all 3 DG models are very similar. For simplicity, we shall
focus on the parameter estimation of DG-DC. Readers can easily generalize the
result to DG-DDC and DG-ODC.

In hierarchical models like DG-DC, estimating MLEs for both θ and ψ is
usually difficult, as their joint distribution is often intractable. Here we shall
propose an simple approximation that is intuitive and efficient.

We first estimate θ to maximize only the second term in (10). Notice that if we
only consider the edge-generation term, we have the original DC model, and the
MLEs for θ are the observed degrees. Substituting θ with these degrees, we can
then estimate the hyper-parameters ψ to maximize the first term. As a result,
we simply reuse the degree-corrected block models and the degree-generation
term becomes the log-likelihood of generating the observed degrees.

As all the θ parameters are generated independently, for undirected networks
the degree generation term is

logP (θ | g, ψ) =
∑

u

log (Fgu(du|ψgu)) . (13)

Notice that if we use a uninformative piror, i.e., assuming P (θ | ψ) is a
uniform distribution, this approximation is exact. With any other prior, the
MLEs would be different. Under this approximation, the degree generation term
acts merely as a penalty term rather than an intergral part of the likelihood
function. However, it is enough to achieve our goal of leveraging the degree
information for community detection.

Degree independent community structures favored by the DC model are no
longer necessarily the most likely of the whole likelihood function. If they are
too far off the prior degree distribution, they will be properly penalized for their
poor fit. This would leave the door open for other community structures that
might not be as a good fit to the edges, but compensates with a much better fit
to the degrees.

Next, we shall show one of the most popular form for Fgu(·|ψgu), and the
corresponding estimation of the hyper parameter ψ under the approximation
θ̂u = du.

Power-law degree generation
We present a power-law DG here to illustrate how we can use DG to handle de-
gree sequences with power-law tail. Degree-generated block model for networks
with other degree distributions can be established in the same way. We focus on
power-law in this paper because it is prevalent in all kinds of real world networks.
First popularized by the Preferential attachment model [4], power-law degree dis-
tributions has been hot topic in networks across different disciplines [10, 19, 2, 5].

With a power-law distribution, the degrees are highly skewed and degree-
correction becomes necessary. Thus, power-law tail is an idea test bed for our
degree-generated block model where degree-correction is crucial but it alone
cannot achieve satisfying performance.

Although the degrees are discrete values, the θ parameters can be continuous.
We fit the observed degrees to both discrete and continuous power-law distri-

133

Degree Correction in Stochastic Block Models 9

butions. Empirically we find both of them perform very well. The only notable
difference between them is the running time. Fitting degrees to a continuous
power-law distribution can be faster because the MLEs of its parameters can be
calculated analytically.

In the discrete case, for any vertex u in block r, the probability that it has
degree du (here du can be in-, out- or total-degree of vertex u) is the following

p(du) =

{
βr du < dmin

(1−βr)d−αru

ζ(αr, dmin)
du ≥ dmin

(14)

Here we have the Riemann zeta function ζ(α, x) =
∑∞
n=x n

−α. And dmin is the
minimal degree of the power-law tail. The hyper parameters of the power-law
degree distribution are ψr = {αr, βr}.

The MLEs for β is straightforward, that is

βr = φr/nr . (15)

Here φr is the number of vertices in block r that have degree less than dmin. The
MLEs for α is a little more complicated. A detailed description about the MLEs
for power-law distribution can be found in [6]. There is no analytical solution,
but α can be estimated numerically. Given a power-law degree sequence in any
block r, that is d = {d1, d2, ..., dn}, here di ≥ dmin are integers larger than or
equal to dmin, the log-likelihood function for the power-law parameter α is

logP (α) = −n ln ζ(α, dmin)− α
n∑

i=1

ln di . (16)

Then, we can simply search α to maximize (16).
In the continuous case, for any vertex u, we have

p(du) =

βr du < dmin

(1−βr)(αr−1)
dmin

(
du
dmin

)−αr
du ≥ dmin

(17)

The MLEs for β is same as (15). Now the MLEs for α can be solved analytically.
Given a power-law degree sequence d = {d1, d2, ..., dn}, di ≥ dmin in any block
r, the MLEs for αr is

α̂r = 1 + n

[
n∑

i=1

ln
di
dmin

]−1
(18)

3 Experiments

3.1 Generation of synthetic networks

Undirected networks with specific degree distributions in each community can
be generated by DG-DC. For each vertex u, we first generate θu following the

134

10 Yaojia Zhu, Xiaoran Yan, Cristopher Moore

distribution Fgu(·|ψgu). After generating θ parameters, we need to choose a
symmetric ω matrix, which satisfies

∑
s ωrs = κr for each block r. Here κr is

the summation of the θ values in block r, that is κr =
∑
u:gu=r

θu. Then the
number of edges connecting each pair of vertices u, v is drawn from a Poisson
distribution with mean θuθvωgugv/(κguκgv) or θuθvωgugv/(2κguκgv) if u = v. We
can also generate the edges by first determining the number of edges for each air
of blocks and then assigning the edge ends to vertices, which is described in [12].

Directed networks can be generated by DG-DDC or DG-ODC in the way
illustrated in Table 2. For each vertex u, we first generate θinu and θoutu , each of
them follows a specific distribution: F in

gu(·|ψin
gu) and Fout

gu (·|ψout
gu) respectively.

For DG-DDC, given a block assignment g, we have κoutr =
∑
u:gu=r

θoutu and

κinr =
∑
u:gu=r

θinu . Now ωrs can be chosen to specify the community structure,

and it should satisfy the constraints κoutr =
∑
s ωrs and κinr =

∑
s ωsr. After

choosing ωrs, the number of directed edges from vertex u to v is Poisson dis-
tributed with mean equal to θoutu θinv ωgugv/(κ

out
gu κ

in
gv).

As to DG-ODC, for each vertex u, we combine the parameters θinu and θoutu

into one by setting θu = θoutu + θinu . Given a block assignment g, we have κr =∑
u:gu=r

θu. Now ωrs can be chosen to specify the community structure, and it
should satisfy the constraints κr =

∑
s(ωrs+ωsr). After choosing ωrs, the edges

can be generated. The number of directed edges from vertex u to v is Poisson
distributed with mean equal to θuθvωgugv/(κguκgv).

3.2 Synthetic test on undirected networks

We generate undirected networks using DG-DC. The degree sequence in the first
block follows a power-law tail with α = 2.5 and dmin = 1. In the second block,
the degree sequence is Poisson-distributed with mean 20. We place about 1200
vertices in each block.

Just like in [12], we use a parameter λ to interpolate linearly between a
fully random network with no community structure to some planted one as the
following

ωrs = λωplanted
rs + (1− λ)ωrandom

rs . (19)

Here ωrandom
rs = κrκs/2M , and we set ωplanted

rs to be the following

ωplanted =

(
κ1 0
0 κ2

)
. (20)

Thus, all edges are placed within communities.
We plotted the result in Fig. 2. Each point on the graph is based on 30

randomly generated networks. For each network, we choose the best result from
10 initials. For each initial, 1 million MCMC steps are executed. The green
points are obtained from DG-DC and the red points are from the original DC
without degree-generation. For each color, the square ones are from initials with
true block assignment, and the circle ones are from random initials. DG-DC
works very well even for very small λ values. DG-DC can classify most of the

135

Degree Correction in Stochastic Block Models 11

vertices correctly even when there is no community structure for DC because the
block memberships for most of the vertices can be well determined only based
on the degree sequence information. True block assignment initialization cannot
help DG-DC. It improves DC when λ is close to the phase transition point. We
checked the likelihood values found by DC-T (DC initialized with true block
assignment) and mboxDC-R (DC initialized randomly) at λ = 0.4, and found
DC-R achieved higher likelihood value. That means DC-T actually got stuck
into a local optima.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

λ

N
or

m
al

iz
ed

 M
ut

ua
l I

nf
or

m
at

io
n

DG−DC−T

DG−DC−R

DC−T

DC−R

Fig. 2. Tests on networks generated by DG-DC

3.3 Synthetic test on directed networks

In our following synthetic test, we generate directed networks using DG-ODC.
We place the vertices into two blocks and each block contains about 1200 vertices.
In the first block, both out- and in-degrees are Poisson distributed with mean
20. In the second block, both out- and in-degrees are power-law distributed with
α = 2.5 and dmin = 1. For ODC, ωrandom

rs is the one that makes all ρrs to be
equal, i.e., 1/2. In that case all edges are oriented randomly, and ωrs = ωsr.
On the other hand, the corresponding undirected network should also be fully
random with respect to DC, namely ωrs + ωsr = κrκs/2M . Thus, we have
ωrandom
rs = κrκs/4M . We set ωplanted

rs to be totally asymmetric. For K = 2, we
have

ωplanted =

(
(κ1 − ω12)/2 ω12

0 (κ2 − ω12)/2

)
, (21)

where ω12 ≤ min(κ1, κ2). In this test, we choose ω12 = 1
2min(κ1, κ2).

We can see in Fig. 3, DG-ODC and DG-DDC have very similar performance
all the way and both of them can achieve much better performance than the
original block models. This meets our expectation very well. As now the de-
gree sequences contain so much information about the block memberships, both

136

12 Yaojia Zhu, Xiaoran Yan, Cristopher Moore

DG-ODC and DG-DDC works perfectly. DG-ODC doesn’t outperform DG-DDC
because the orientation information cannot help more if the degree sequence in-
formation is already used. Without degree generation, ODC outperforms DDC
for large lambda values, this is because without leveraging the degree sequence
information, edge orientations can still help.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

λ

N
or

m
al

iz
ed

 M
ut

ua
l I

nf
or

m
at

io
n

DG−ODC−T
DG−ODC−R
DG−DDC−T
DG−DDC−R
ODC−T
ODC−R
DDC−T
DDC−R

Fig. 3. Tests on networks generated by DG-ODC

In our following test, we generate directed networks using DG-DDC. We place
the vertices into two blocks and each block contains about 1200 vertices. The
out-degrees of block 1 and in-degrees of block 2 are Poisson-distributed with
mean 20. The in-degrees of block 1 and out-degrees of block 2 are power-law
distributed with α = 1.8 and dmin = 1. The power-law degree distributions are
upper bounded to make sure the average degree is also 20 (same as the Poisson
mean). For DDC, we have

ωrandom
rs = κoutr κins /M . (22)

We set the planted ω matrix as the following one with only off-diagonal en-
tries. Thus, the planted community structure is disassortative. For any λ, the
connections between block 1 and block 2 are almost symmetric.

ωplanted =

(
0 κout1

κout2 0

)
. (23)

As presented in Fig. 4, one interesting thing is ODC-R works equally well
for all λ. Although ωrandom

rs for DDC is also a random ω for ODC, for small
λ, ODC can achieve very good performance due to the degree distributions we
used. As both of the out-degrees in block 1 and the in-degrees in block 2 are
power-law distributed, some vertices in block 1 will have very high out-degrees
and some vertices in block 2 will have very high in-degrees. We can imagine a
lot of edges from block 1 to block 2 are connecting these high degree vertices.

137

Degree Correction in Stochastic Block Models 13

0 0.2 0.4 0.6 0.8 1.0

0

0.2

0.4

0.6

0.8

1.0

λ

N
or

m
al

iz
ed

 M
ut

ua
l I

nf
or

m
at

io
n

DG−DDC−T
DG−DDC−R
DG−ODC−T
DG−ODC−R
DDC−T
DDC−R
ODC−T
ODC−R

Fig. 4. Tests on networks generated by DG-DDC

If we exchange the block memberships of these vertices, the orientations of all
those edges are reversed. This is a community structure preferred by ODC as
now most of the inter-block edges are oriented to block 1. As the number of
the high degree vertices is very small, mislabeling them does not matter much.
That’s why ODC can find a block assignment very close to the true one although
mboxODC doesn’t like the true block assignment either. When λ is large enough,
ODC-T can find the planted community structure. We checked the log-likelihood
values it found. For λ ≤ 0.8, ODC-R actually found higher log-likelihood values
than the one of the true block assignment. For λ = 1, ODC-R can only find
lower log-likelihood values. That means when λ = 0.6 and 0.8, the true block
assignment is actually a local optima for the ODC model. ODC-T got stuck
there. But when λ = 1, namely the network is fully disassortative, then the true
block assignment is a better, but ODC cannot find it within 1M MCMC steps
if random initialization is adopted.

This phenomena is also found when we were trying to apply ODC on other
symmetric connected networks, for example the political-blog network. Recall
that the likelihood function for ODC, which is (5), has two parts. The first
part generates the undirected network, which is DC. The second part generates
the edge orientations. If the orientations are symmetric, there should be two
modes in the landscape. One mode is the community structure preferred by the
original DC, another mode is the one with highly asymmetric orientations. ODC
will stuck into the second mode easily even if the network is highly assortative
or disassortative and the true block assignment is the one with higher likelihood.
ODC will also stuck into the first mode when true block assignment initials are
used although the true block assignment may not necessary to be the one with
maximum likelihood.

138

14 Yaojia Zhu, Xiaoran Yan, Cristopher Moore

3.4 Empirical networks

In this section, we test the models on three word adjacency networks in which
vertices are separated into two blocks: noun and adjective. “David” is the adja-
cency network of common adjectives and nouns in the novel David Copperfield
by Charles Dickens [18]. “News” is the adjacency network of common (degree
is larger than or equal to 10) adjectives and nouns obtained from News corpus.
“Brown” is the giant component in the adjacency network of adjective and nouns
in the Brown’s corpus. All of them are asymmetric networks as adjectives are
very likely to be followed by nouns, however nouns are not common to be fol-
lowed by adjectives. Let’s assume adjectives are in block 1 and nouns are in block
2, then we have p12 > p21. For each network, we consider both multigraph (M)
where multi-edges are included and simple graph (S) where multi-edges are ig-
nored. Table. 3 revealed the basic information of these networks. The connection
probability matrices are listed in Table. 4.

Table 3. Word adjacency networks

Network #words #adjective #noun #edges (S) #edges (M)

David 112 57 55 569 1494
News 376 91 285 1389 2411
Brown 23258 6235 17023 66734 88930

Table 4. Connection probability matrices

David(S) David(M) News(S) News(M) Brown(S) Brown(M)

0.039 0.118 0.080 0.358 0.010 0.015 0.012 0.028 9.1e-05 3.4e-04 1.1e-04 4.4e-04
0.018 0.006 0.025 0.011 0.002 0.010 0.003 0.019 2.0e-05 8.8e-05 2.4e-05 1.2e-04

3.5 Comparison of degree-corrected models

Table. 5 compares the clustering performance for different block models, includ-
ing SBM, DC, ODC and DDC. When applying DC to these directed networks,
we simply ignore the edge orientations (the resulted network may contain multi-
edges even though the original directed one doesn’t). Both the percentage of
correctly labeled vertices and the NMI value are listed for each model on each
network. The results for “David” and “News” are based on 100 initials; for
“Brown”, 50 initials are used. All the initials are chosen randomly. For each
model and each network, we take the best result among those initials. For each

139

Degree Correction in Stochastic Block Models 15

initial we run the KL-heuristic [12] followed by 1 million MCMC steps. We also
tested a naive heuristic (NH) algorithm which simply labels a vertex as adjec-
tive if its out-degree is larger than in-degree or noun if its out-degree is less
than in-degree. For vertices with equal in- and out-degree, NH assigns its la-
bel randomly. We present the average performance of NH in Table. 5 based on
100 runs for “David” and “News” and 50 runs for “Brown”. NH represents the
performance we can achieve if we only use the edge orientations for community
detection.

Table 5. Clustering results with random initialization

David(S) David(M) News(S) News(M) Brown(S) Brown(M)

SBM 84.8/0.423 57.1/0.051 62.2/0.006 57.2/0.018 70.0/0.001 70.1/7e-04
DC 91.1/0.566 91.1/0.568 56.4/0.084 56.6/0.083 55.6/0.020 55.5/0.015
ODC 87.5/0.462 87.5/0.470 56.4/0.084 56.4/0.029 75.3/0.311 80.3/0.318
DDC 70.5/0.128 51.8/8e-04 56.4/0.084 55.1/0.091 55.8/0.016 53.8/0.012
NH 84.4/0.395 86.6/0.449 72.8/0.215 73.8/0.233 78.0/0.309 78.1/0.314

a little better. ODC mislabeled 2731 while DC mislabeled 2621. But overall,
ODC works much better than DDC on “News” and “Brown” networks.

For “David”, DC works best and ODC also works pretty well. Both of them
performs better than NH. After examining “David” more carefully, we found in
this small network, three adjectives only have in-degree. They are “full”, “glad”
and “alone”. ODC will mislabel them while DC labeled them correctly by just
ignoring the edge orientations. In such a situation, we really cannot criticize
ODC. As to SBM, it works well on “David(S)” but fails on “David(M)”, this is
because the degrees in the multigraph are more skewed than those in the simple
one. It is a little surprising that DDC performs worst, and even worse than SBM.
We learn a lesson here that a full degree-correction may make things worse even
when the degrees in each community are quite inhomogeneous.

For “News”, all the block models fail, even ODC doesn’t work. We found
there is a highly assortative community structure in the “News” network where
about 90% edges are within commuities. All the block models will finally return a
community structure very close to that one. As we mentioned earlier, ODC needs
to make trade-off between the community structure preferred by DC and the one
that is disassortative mixing and have highly asymmetric inter-block connections.
Here, ODC sacrifices the second one. However, after checking the results returned
by ODC for all initials, we found most of the times ODC works. Table. 6 presents
the average clustering performances over 100 initials. The decimals outside the
parentheses are the average percentages of correctly labelled vertices and the
average NMI values between the best clustering the algorithm found in each

140

16 Yaojia Zhu, Xiaoran Yan, Cristopher Moore

Table 6. Average clustering performances with random initialization

David(S) News(S) Brown(S)

SBM 84.8(0)/0.423(0) 62.3(0.3)/0.005(0.001) 70.0(0)/0.001(0)
DC 91.1(0)/0.566(0) 56.4(0.08)/0.084(4e-04) 59.8(5.3)/0.052(0.037)
ODC 87.5(0)/0.462(0) 74.7(2.1)/0.237(0.020) 75.3(0)/0.311(0)
DDC 63.9(10.7)/0.096(0.108) 56.4(0.07)/0.084(4e-04) 53.5(2.0)/0.008(0.007)
NH 84.4(1.0)/0.395(0.023) 72.8(0.7)/0.215(0.012) 78.0(0.09)/0.309(0.003)

David(M) News(M) Brown(M)

SBM 57.1(0)/0.051(0) 57.5(2.3)/0.017(0.006) 70.1(0)/7e-04(0)
DC 76.4(18.3)/0.344(0.264) 52.5(1.9)/0.025(0.030) 57.6(4.6)/0.032(0.028)
ODC 87.5(0)/0.470(0) 74.3(6.0)/0.232(0.058) 79.7(0.2)/0.317(6e-04)
DDC 59.4(7.6)/0.044(0.055) 52.4(1.9)/0.028(0.031) 52.5(1.6)/0.005(0.006)
NH 86.6(0)/0.449(0) 73.8(0.6)/0.233(0.009) 78.1(0.1)/0.314(0.002)

initial and the true clustering. The decimals in parentheses are the standard
deviations. The average performance of ODC is pretty good. ODC returns that
highly assortative community structure very occasionally during those initials,
although that community structure has the highest likelihood value. On the
other hand, if we really know something about the community structure we are
looking for, finding out that one based on the results of those initials can be
simple.

For “Brown”, every block model fails except ODC. It seems SBM works, as
it labels 70% vertices correctly. However SBM achieves this by simply putting
almost all vertices in one block. That’s why the NMI values are very low. ODC
has very close performance to NH on both the simple and multigraph.

All the block model tests discussed so far are based on random initializa-
tions. However, NH is actually a perfect block assignment initializer for the
block models on these word adjacency networks. The following tests are based
on NH initializations, namely the NH results are used for block membership
initializations.

Table 7. Clustering results with NH initialization

David(S) David(M) News(S) News(M) Brown(S) Brown(M)

SBM 84.8/0.423 57.1/0.051 62.2/0.006 56.1/0.021 70.0/0.001 70.1/7e-04
DC 91.1/0.566 91.1/0.568 56.4/0.084 55.3/0.015 70.6/0.160 70.2/0.155
ODC 87.5/0.462 87.5/0.470 75.3/0.247 77.9/0.270 75.3/0.311 80.3/0.318
DDC 57.1/0.015 64.3/0.060 56.4/0.084 52.9/0.005 54.0/0.005 64.0/0.070
NH 84.4/0.395 86.6/0.449 72.8/0.215 73.8/0.233 78.0/0.309 78.1/0.314

141

Degree Correction in Stochastic Block Models 17

Table 8. Average clustering performances with NH initialization

David(S) News(S) Brown(S)

SBM 84.8(0)/0.423(0) 62.2(0)/0.006(0) 70.0(0)/0.001(0)
DC 91.1(0)/0.566(0) 56.4(0.08)/0.084(4e-04) 71.1(0.2)/0.171(0.003)
ODC 87.5(0)/0.462(0) 75.3(0)/0.247(0) 75.3(0)/0.311(0)
DDC 84.2(6.1)/0.395(0.108) 56.4(0.06)/0.084(3e-04) 62.1(3.5)/0.060(0.023)
NH 84.4(1.0)/0.395(0.023) 72.8(0.7)/0.215(0.012) 78.0(0.09)/0.309(0.003)

David(M) News(M) Brown(M)

SBM 57.1(0)/0.051(0) 58.7(2.0)/0.014(0.005) 70.1(0)/7e-04(0)
DC 91.1(0)/0.568(0) 52.5(1.9)/0.025(0.030) 70.2(0.3)/0.156(0.004)
ODC 87.5(0)/0.470(0) 75.3(1.2)/0.240(0.014) 79.7(0.08)/0.317(3e-04)
DDC 75.6(2.6)/0.204(0.037) 52.4(1.9)/0.028(0.031) 64.3(0.2)/0.073(0.002)
NH 86.6(0)/0.449(0) 73.8(0.6)/0.233(0.009) 78.1(0.1)/0.314(0.002)

In Table. 7, we found with NH initialization ODC works pretty well on
”News”. It returns the desired comunity structure in all 100 initials. DC also
works much better on ”Brown”, and 70% vertices are correctly labelled. With
random initialization, it’s only around 55%. With NH initialization, the perfor-
mances are more stable now. Table. 8 lists the average clustering performances
and we can see the standard deviations are much lower than the ones in Table. 6.
For “David”, now DC works perfectly on ”David(M)”, but previously, it’s av-
erage performance on ”David(M)” is quite fair and not stable either. DDC also
improves itself on both ”David(S)” and ”David(M)”. ODC now works better on
“News” with higher average percentages and NMI values and much lower devia-
tions. DC also works much better on average while having much lower deviations
on “David”.

3.6 Results on degree generated models

In “Brown”, the real data show that both the out- and in-degree distributions
have heavy tails close to power-law. In Fig. 5 we plotted the complementary
CDF of the out- and in-degrees for Brown(S) and Brown(M). We estimate the
power-law θ parameters of the real data using both discrete (labeled with [D])
and continuous (labeled with [C]) methods, which are introduced in section 2.3.
Setting dmin = 1, the MLEs of the θ parameters are listed in Table 9.

We compare the performances of the power-law degree-generated block mod-
els with those original degree-corrected models. In Table 10 11, the first row lists
the results of the original degree-corrected models without degree-generation,
and the second row shows the results of the block models with power-law degree
generation. We use KL-heuristic plus MCMC to infer the parameters and the
community structures. All the results are obtained from 50 initials, each of them

142

18 Yaojia Zhu, Xiaoran Yan, Cristopher Moore

10
0

10
1

10
2

10
310

−4

10
−3

10
−2

10
−1

10
0

out−degree

C
C

D
F

Brown Corpus (S)

noun
adjective

10
0

10
1

10
2

10
310

−5

10
−4

10
−3

10
−2

10
−1

10
0

in−degree

C
C

D
F

Brown Corpus (S)

noun
adjective

10
0

10
1

10
2

10
3

10
410

−4

10
−3

10
−2

10
−1

10
0

out−degree

C
C

D
F

Brown Corpus (M)

noun
adjective

10
0

10
1

10
2

10
310

−5

10
−4

10
−3

10
−2

10
−1

10
0

in−degree

C
C

D
F

Brown Corpus (M)

noun
adjective

Fig. 5. Degree distributions in Brown network

Table 9. Degree parameter MLEs in Brown

block αin[D] αin[C] αout[D] αout[C] βin βout

Brown(S)
adj 1.829 2.329 1.952 2.629 0.161 0.527
noun 1.987 2.721 1.793 2.248 0.716 0.021

Brown(M)
adj 1.741 2.136 1.828 2.326 0.161 0.527
noun 1.931 2.576 1.740 2.134 0.716 0.021

143

Degree Correction in Stochastic Block Models 19

is initialized randomly. For each model and each network, we take the best result
among those initials. In each initial we run the KL-heuristic followed by 1 million
MCMC steps. Both the percentage of correctly labelled vertices and the NMI
value are listed for each model on each network. We can see in Table 10, degree
generation do improves the performance of DDC and DC. As to ODC, it already
works pretty well by itself and degree generation doesn’t help. However we also
found power-law degree generation can actually speed up the searching perfor-
mance. KL-heuristic has high complexity, which is O(N2 logN). Although each
MCMC step only takes O(K2), for large networks, MCMC converges slowly. If
we give up KL-heuristic (this may be unavoidable for handling large networks),
in other words, each initial only runs 1 million MCMC steps, we get the results
in Table 11. We can see in Table 11, DDC, DC and even ODC becomes worse
when there is no degree generation. With degree generation, the performances
of all these models are very stable compared to the results with KL-heuristic in
Table 10.

Table 10. Clustering results on Brown with KL-heuristic

DC ODC DDC DG-DC DG-ODC DG-DDC

Brown(S) 55.6/0.020 75.3/0.311 55.8/0.016 74.4/0.283 75.3/0.310 73.3/0.224
Brown(M) 55.5/0.015 80.3/0.318 53.8/0.012 75.6/0.290 76.0/0.320 72.2/0.210

Table 11. Clustering results on Brown without KL-heuristic

DC ODC DDC DG-DC DG-ODC DG-DDC

Brown(S) 54.3/0.010 72.0/0.188 53.7/0.008 75.1/0.275 76.5/0.297 71.4/0.224
Brown(M) 52.6/0.007 73.4/0.203 53.8/0.011 75.4/0.276 77.3/0.308 70.9/0.194

4 Conclusions

Degree-correction in stochastic block models provides a powerful approach to
dealing with networks with inhomogeneous degree distributions. Partial degree-
correction is a new idea proposed in this paper which tolerates highly skewed
degrees within community while still be able to utilize degree information for
community detection purpose. We demonstrated two ways to achieve this. One is
the oriented degree-corrected block model which prefers highly asymmetric inter-
block connections. Another is the degree-generated block model which fits the
degree sequence in each community to a family of distributions before examining
the edge connecting patterns. Thus, block assignments in which degree sequences
are poorly fitted is thought to be unlikely.

144

20 Yaojia Zhu, Xiaoran Yan, Cristopher Moore

We have shown that in certain networks these new block models can apply
appropriate partial degree-correction, achieving higher accuracy. The oriented
degree-corrected block model usually works well on asymmetric networks. How-
ever, when the misinformation in the edge connecting patterns is overwhelmingly
strong, the orientation information might not be enough to compensate. There
are also situations when the block connecting pattern looks fairly symmetric,
OCD is still able to leverage highly asymmetric connections occurred between
only a few vertices. Further study of different degree corrections is required to
better understand their effectiveness for different networks.

The degree generated block models showed the most promise with their ex-
cellent performance across the board, especially with noisy data. Nonetheless,
their effectiveness depends heavily on knowing the true form of the degree distri-
bution in each community. Without the ground truth of block assignments, one
would have to guess an appropriate form first, making it a much more difficult
problem.

With multiple degree corrected models, and multiple ways to do degree gen-
eration for each of them, we now have a tough choice to make whenever we meet
new networks. Better understanding of each model could help but real-world
networks may exhibit structures too complicated to comprehend. A much better
alternative is a model selection criterion which can predict relative performance
of each model automatically based on the observed data.

5 Acknowledgments

We are grateful to Terran Lane, Ben Edwards, Aaron Clauset, and Mark New-
man for helpful conversations. This work was supported by the McDonnell Foun-
dation.

145

Bibliography

[1] L. Adamic and N. Glance. The political blogosphere and the 2004 US
Election: Divided They Blog. In Proc 3rd Intl Workshop on Link Discovery.,
2005.

[2] W. Aiello, F. Chung, and L. Lu. A random graph model for power law
graphs. Experimental Mathematics, 10(1):53–66, 2001.

[3] E.M. Airoldi, D.M. Blei, S.E. Fienberg, and E.P. Xing. Mixed membership
stochastic blockmodels. The Journal of Machine Learning Research, 9:1981–
2014, 2008.

[4] Réka Albert and Albert-László Barabási. Statistical mechanics of complex
networks. Rev. Mod. Phys., 74:47–97, Jan 2002.

[5] Fan Chung and Linyuan Lu. The average distances in random graphs with
given expected degrees. Proceedings of the National Academy of Sciences
of the United States of America, 99(25):15879–82, December 2002.

[6] A. Clauset, C.R. Shalizi, and M.E.J. Newman. Power-law distributions in
empirical data. June 2007.

[7] Aurelien Decelle, Florent Krzakala, Cristopher Moore, and Lenka Zde-
borová. Asymptotic analysis of the stochastic block model for modular
networks and its algorithmic applications. Physical Review E, 84(6), De-
cember 2011.

[8] Aurelien Decelle, Florent Krzakala, Cristopher Moore, and Lenka Zde-
borová. Inference and Phase Transitions in the Detection of Modules in
Sparse Networks. Physical Review Letters, 107(6), August 2011.

[9] S.E. Fienberg and S. Wasserman. Categorical data analysis of single socio-
metric relations. sociological Methodology, pages 156–192, 1981.

[10] S. Fortunato. Community detection in graphs. Physics Reports, 2009.
[11] P.W. Holland, K.B. Laskey, and S. Leinhardt. Stochastic blockmodels: First

steps. Social Networks, 5(2):109–137, 1983.
[12] B. Karrer and M. Newman. Stochastic blockmodels and community struc-

ture in networks. Physical Review E, 83(1), 2011.
[13] Cristopher Moore, Xiaoran Yan, Yaojia Zhu, Jean-Baptiste Rouquier, and

Terran Lane. Active learning for node classification in assortative and dis-
assortative networks. page 841. ACM Press, 2011.

[14] M. Mørup and L.K. Hansen. Learning latent structure in complex networks.
NIPS Workshop on Analyzing Networks and Learning with Graphs, 2009.

[15] M. Newman and E.A. Leicht. Mixture models and exploratory analysis in
networks. Proceedings of the National Academy of Sciences, 104(23):9564–
9569, 2007.

[16] M.E. Newman. Assortative mixing in networks. Physical Review Letters,
89(20):208701, 2002.

[17] M.E. Newman. Mixing patterns in networks. Physical Review E,
67(2):026126, 2003.

146

22 Yaojia Zhu, Xiaoran Yan, Cristopher Moore

[18] M.E. Newman. Finding community structure in networks using the eigen-
vectors of matrices. Physical Review E, 74(3):036104, 2006.

[19] M. A Porter, J. P Onnela, and P. J Mucha. Communities in networks.
Notices of the American Mathematical Society, 56(9):1082–1097, 2009.

[20] T.A. Snijders and K. Nowicki. Estimation and prediction for stochastic
blockmodels for graphs with latent block structure. Journal of Classifica-
tion, 14(1):75–100, 1997.

[21] S. Wasserman and C. Anderson. Stochastic a posteriori blockmodels: Con-
struction and assessment. Social Networks, 9(1):1–36, 1987.

[22] W. W Zachary. An information flow model for conflict and fission in small
groups. Journal of Anthropological Research, 33(4):452–473, 1977.

147

	Title
	Preface
	Table of Contents
	I Work-in-progress: Automated Named Entity Extraction for Tracking Censorship of Current Events Antonio M. Espinoza,Jedidiah R. Crandall
	II Internet Topology over Time Benjamin Edwards, Steven Hofmeyr, George Stelle, and Stephanie Forrest
	III Progress in Spoken Programming Benjamin M. Gordon
	IV Enriching Chatter Bots With Semantic Conversation Control Chayan Chakrabarti
	V On the Viability of Compression for Reducing the Overheads of Checkpoint/Restart-based Fault Tolerance Dewan Ibtesham, Dorian Arnold, Patrick G. Bridges, Kurt B. Ferreira, and Ron Brightwell
	VI Three Researchers, Five Conjectures: An Empirical Analysis of TOM-Skype Censorship and Surveillance Jeffrey Knockel, Jedidiah R. Crandall, and Jared Saia
	VII Formica ex Machina: Ant Swarm Foraging From Physical to Virtual and Back Again Joshua P. Hecker, Kenneth Letendre, Karl Stolleis, Daniel Washington, and Melanie E. Moses
	VIII Ovarian cancer relapse: micro-carcinomas vary in form with peritoneal niche Kimberly Kanigel-Winner, Mara Steinkamp, Suzy Davies, Abbas Shirinifard, Yi Jiang, and Bridget S. Wilson
	IX Breaking the O(nm) Bit Barrier: Secure Multiparty Computation with a Static Adversary Varsha Dani, Valerie King, Mahnush Movahedi, and Jared Saia
	X Life Wonâ•Žt Wait! (On the Slowdown of Asynchronous Automata Networks) Thomas P. Hayes, Michael Janes, Christopher Moore
	XI Optimal Population Size in Island Model Genetic Algorithms Neal Holtschulte
	XII Implementation of an Embodied General Reinforcement Learner on a Serial Link Manipulator Nicholas Malone, Brandon Rohrer, Lydia Tapia, Ron Lumia, and John Wood
	XIII Quantification of Uncertainty in Parameters Characterizing Within-Host West Nile Virus Infection Soumya Banerjee, Melanie Moses, Alan S. Perelson
	XIV These go to eleven:Cranking up the knobs on IDS scaling performance Sunny James Fugate
	XV Oriented and Degree-generated Block Models: Generating and Inferring Communities with Inhomogeneous Degree Distributions Yaojia Zhu, Xiaoran Yan, and Cristopher Moore

